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Abstract

We study symmetry method to solve some difference equations by determining Lie groups

of symmetries. Then we use these groups to achieve successive reductions of order. If

there are enough symmetries, the difference equations can be completely solved.

Keywords: Difference equations; Lie groups; Symmetry method.
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Chapter 1

Introduction

Most methods for solving a given ordinary differential equation ODE use change of

variable, which transform the equation into a simpler equation that is easy to solve. This

idea was introduced by Sophus Lie. He used symmetry to solve differential equations by

determining Lie groups of symmetries of a given ordinary differential equation. For an

introduction to symmetry method for ODEs, see [Olver(1993)and Hydon(2000)].

Meada (1987) has shown that difference equations of order one can be solved by

Lie’s method, and he showed that the linearized symmetry condition (LSC) for such

difference equation leads to a set of functional equations. Later, Quisple and Sahdevan

(1993) were interested in this method and they extended Meada’s idea to a higher order

difference equations by using a Laurent series expansion about a fixed point at infinity.

This method is restricted by the existence of such a fixed point. Levi et al. (1997)

expanded the linearized symmetry condition as a series in powers of un and looked for

symmetries that are more general than point symmetries but the expression derived

by them was complicated. Hydon (2000) introduced a method for obtaining the Lie

symmetries and used it to reduce the order of the ordinary difference equations and to

find the solution. Then, he applied this method to second order difference equations.

In this Thesis, we study the symmetry analysis for ordinary difference equations. We

investigate the exact solutions of second, third and fourth order nonlinear difference

equations using a group of transformations (Lie symmetries).

This Thesis is organized as follows, in chapter two, we introduce some basic concepts

and solutions of some types of difference equations. In chapter three, we investigate

symmetries of difference equations and the linearized symmetry condition for first and

second order difference equations, and we show how can we use it to solve these equa-

tions. Finally, we generalize the symmetry method for higher order difference equations.
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In chapter four, we apply the symmetry method to solve some nonlinear difference equa-

tions.

Notice that, throughout this thesis we will not talk about qualitative theory of

difference equations. In particular, there is no discussion of stability or oscillation theory.

We introduce knowledge of solution methods for difference equations.
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Chapter 2

Basic Preliminaries

2.1 General Basics

In this section, we recall some basic concepts of difference equations.

Definition 2.1.1. [12] Difference Equation is an equation that expresses a value of

a sequence as a function of the other terms in the sequence, that is, it defines a relation

recursively.

Definition 2.1.2. [1] The order of a difference equation is the difference between

highest and lowest indices that appear in the equation.

An Ordinary Difference Equation of order p is an equation of the form

u(n+ p) = F (p, u(n+ p− 1), · · · , u(n)), (2.1)

where F is a well defined function of it’s arguments.

Definition 2.1.3. [7] A difference equation is linear if equation (2.1) can be written in

the form

ap(n)un+p + ap−1(n)un+p−1 + · · ·+ a0(n)un = b(n), (2.2)

where ai(n) and b(n) for all i = 0, 1, · · · , p are given functions of n.

Definition 2.1.4. [7] A difference equation is nonlinear if it is not linear.

Definition 2.1.5. [11] A solution of a difference equation is a function φ(n) that reduces

the equation to an identity.

Linear difference equations can be classified into homogeneous or non-homogeneous

equation. That is,
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1. If b(n) ≡ 0 in equation (2.2) then it’s called a homogeneous linear difference

equation.

2. If b(n) 6≡ 0 in equation (2.2) then it’s called a non-homogeneous linear difference

equation.

Now, if the difference equation is nonlinear, then it could be transformed into a linear

difference equation, and this property helps us to find a solution. We now give some

examples of difference equations.

Example 2.1. Consider the following difference equations:

• 3un+2 − un+1 = un. ( 2nd order homogeneous linear difference equation).

• un+1 = eun . (1st order nonlinear difference equation).

• un+3 − n
n+1un = n. (3rd order non-homogeneous linear difference equation).

Definition 2.1.6. [11] An initial value problem of a difference equation is a problem of

finding a function that satisfies the equation when we know its value u0 at a particular

point n0.

Example 2.2. The function φ(n) = 3n

(
2 + n(n−1)

6

)
is a solution for the initial value

problem

un+1 − 3un = 3nn; n ≥ 0 and u0 = 2,

since if we substitute φ(n) into the equation, we get

3n+1

(
2 +

n(n+ 1)

6

)
− 3n+1

(
2 +

n(n− 1)

6

)
= 3n+1

(
2 +

n2

6
+
n

6
− 2− n2

6
+
n

6

)
= 3nn.

Also, we have

φ(0) = 30

(
2 +

0(0− 1)

6

)
= 2 = u0.

2.2 Existence And Uniqueness Theorem

It should be clear that for a given difference equation, even if a solution is known to exist,

there is no assurance that it will be unique. The solution must be restricted by given

a set of initial conditions equal in number to the order of the equation. The following

theorem states conditions that assure the existence of a unique solution.
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Theorem 2.2.1. [11] Let

u(n+ p) = F (n, u(n), · · · , u(n+ p− 1));n = 0, 1, 2, ... (2.3)

be a pth order difference equation, where f is defined for each of its arguments. Then

equation (2.3) has a unique solution corresponding to each arbitrary selection of the p

initial values u(0), u(1), · · · , u(p− 1).

Proof. Suppose that u(0), u(1), · · · , u(p − 1) are given. Then the difference equation

with n = 0 uniquely specifies u(p). Now u(p) is known, the difference equation with

n = 1 gives u(p+ 1). Continue in this way, all un for n ≥ p, can be determined.

Definition 2.2.1. [11] The functions f1(n), f2(n), ..., fm(n) are said to be linearly de-

pendent for n ≥ n0, if there exists scalars c1, c2, ..., cm not all zero such that

c1f1(n) + c2f2(n) + ...+ cmfm(n) = 0, ∀n ≥ n0.

So each function fj for j = 1, 2, · · · ,m with nonzero coefficient is a linear combination

of the other fi’s. The functions f1(n), ..., fm(n) are said to be linearly independent for

n ≥ n0 if whenever

c1f1(n) + c2f2(n) + ...+ cmfm(n) = 0, ∀n ≥ n0,

then we must have c1 = c2 = ... = cm = 0.

2.3 First Order Linear Difference Equations

In this section, we consider the simplest linear difference equation which is first order

linear difference equation. So we start with the following equation

un+1 = aun, n ∈ N (2.4)

where a is a given constant. The solution is given by

un = anu0. (2.5)

The value u0 is called the initial value. To prove that (2.5) solves (2.4), we proceed as

follows:

un+1 = an+1u0 = a(anu0) = aun.
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Equation (2.4) is a first order homogeneous difference equation with constant coefficients.

Now, we want to generalize equation (2.4) to non-homogeneous with non-constant coef-

ficients.

Theorem 2.3.1. [12] Let a(n) and b(n) be real sequences where n ∈ N. Then the first

order linear difference equation

un+1 + a(n)un = b(n), (2.6)

with initial condition u0 = c, has a unique solution of the form

un =

(
n−1∏
i=0

−a(i)

)
c+

n−1∑
i=0

(
n−1∏
j=i+1

−a(j)

)
b(i). (2.7)

Proof. First, we must show that (2.7) satisfies the equation (2.6) and the initial condi-

tion. We first write the expression for un+1

un+1 =

(
n∏
i=0

−a(i)

)
c+

n∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i).

We then rewrite the last summation above as follows,

n∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i) =

n∏
j=n+1

(
− a(j)b(n)

)
+

n−1∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i)

since
n∏

j=n+1

(
− a(j)

)
= 1,

we get

n∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i) = b(n) +

n−1∑
i=0

(
n∏

j=i+1

−a(j)

)
b(i)

= b(n)− a(n)

[
n−1∑
i=0

(
n−1∏
j=i+1

−a(j)

)
b(i)

]
.

Using this result we obtain,

un+1 = −a(n)

(
n−1∏
i=0

−a(i)

)
c+ b(n)− a(n)

(
n−1∑
i=0

[
n−1∏
j=i+1

−a(j)

]
b(i)

)
,

which implies

un+1 = −a(n)un + b(n).

6



Thus, we have shown that un is a solution. Finally we must prove uniqueness. Assume

that we have two solutions un and ûn, both satisfy (2.6) and the initial condition. Now,

consider the set {n ∈ N;un 6= ûn}. Let n0 be the smallest integer in this set. We must

have n0 ≥ 1, since u0 = û0. By the definition of n0 we have un0−1 = ûn0−1 and then

un0 = a(n0 − 1)un0−1 + b(n0 − 1) = a(n0 − 1)ûn0−1 + b(n0 − 1) = ûn0 ,

which is a contradiction. Thus we must have n0 = 0. But u0 = û0 = c since the two

equations satisfy the same initial condition. It follows that the solution is unique.

Example 2.3. Consider the difference equation

un+1 = 2un + n, u0 = 5.

Solution. Using the general formula (2.7) we get the solution

un = 5(2)n +

n−1∑
i=0

i(2)n−1−i = 5(2)n + 2n − n− 1.

�

2.4 Difference Calculus

In this section, we want to define operators which act on difference equations.

Definition 2.4.1. [7] The forward difference operator ∆ is defined as follows

∆un = un+1 − un,

where the expression un+1−un is called the difference of un. Similarly, we call ∆2 = ∆.∆

the second difference operator and when acting on un, we get

∆2un =∆(∆un)

=∆(un+1 − un)

=un+2 − 2un+1 + un.

In general, for any positive integer m, we define the relation

∆mun = ∆m−1(∆un),

7



repeating this m− times.

Any ordinary difference equation can be written in terms of the forward shift operator

S and the identity operator I, which are defined as follows

S : n→ n+ 1, I : n→ n, ∀n ∈ Z. (2.8)

The identity operator I maps each function of n to itself. The operator S maps each

function of n to a function of n+ 1.

The forward difference operator ∆ can be written in terms of the operators S and I

∆ = S − I.

If we apply S to any function of n repeatedly by r times, we obtain

Sr{f(n)} = f(n+ r), Srun = un+r.

The forward shift operator satisfies a simple product rule

Sr{f(n)g(n)} = f(n+ r)g(n+ r) = Sr{f(n)}Sr{g(n)}.

Example 2.4. Any first order linear homogeneous difference equation can be written in

operator notation as

(S + a(n)I)un = 0.

2.5 Higher Order Linear Difference Equations

In this section, we give a short introduction to the theory of higher order linear difference

equations. A linear difference equation of order p has the following form

ap(n)un+p + ap−1(n)un+p−1 + · · ·+ a0(n)un = b(n), (2.9)

where ap(n) and a0(n) are not zeros. As we mentioned before in section (2.1), if b(n) is

identically zero, then the linear equation is homogeneous and has the form

ap(n)un+p + ap−1(n)un+p−1 + · · ·+ a0(n)un = 0. (2.10)

Lemma 2.5.1. [12] Let u1(n) and u2(n) be two solutions of equation (2.10). Then the

following statements hold

1. un = u1(n) + u2(n) is a solution of equation(2.10).

8



2. û(n) = au1(n); a is a constant is also a solution of equation (2.10).

Proof. 1. Let u1(n) and u2(n) be two solutions of equation (2.10). So

ap(n)u1(n+ p) + ap−1(n)u1(n+ p− 1) + · · ·+ a0(n)u1(n) = 0

and

ap(n)u2(n+ p) + ap−1(n)u2(n+ p− 1) + · · ·+ a0(n)u2(n) = 0.

Add the last two equations to each other, we get

ap(n)u(n+ p) + ap−1u(n+ p− 1) + · · ·+ a0(n)u(n) = 0,

where u(n) = u1(n) + u2(n). So un is a solution of equation (2.10).

2. Assume u1(n) is a solution of equation (2.10), then

ap(n)u1(n+ p) + ap−1(n)u1(n+ p− 1) + · · ·+ a0(n)u1(n) = 0.

Now, we multiply the last equation by a this implies that û(n) is a solution of

equation (2.10).

Theorem 2.5.2. [12] (Superposition Principle) If u1(n), u2(n), · · · , um(n) are solutions

of equation (2.10), then u(n) = c1u1(n) + c2u2(n) + ...+ cmum(n) is also a solution.

Proof. Direct from previous Lemma (2.5.1).

Definition 2.5.1. [12] A set of m linearly independent solutions of equation (2.10) is

called a fundamental set of solutions.

Definition 2.5.2. [12] Let {u1(n), u2(n), · · · , um(n)} be a fundamental set of solutions

of equation (2.10). Then the general solution of equation (2.10) is given by

m∑
i=1

ciui(n).

Now, our objective is to find a fundamental set of solutions and, consequently, the

general solution of equation (2.10). First, we want to consider the case where the ai’s

are constants and a0 6= 0, that is, equation (2.10) is simplified to

apun+p + ap−1un+p−1 + · · ·+ a0un = 0. (2.11)

9



We suppose that solutions of equation (2.11) are of the form rn where n ∈ N. Substi-

tuting rn into equation (2.11), we get

apr
p + ap−1r

p−1 + ...+ a0 = 0.

This equation is called the characteristic equation of equation (2.11) and its roots

r1, r2, · · · , rp are called the characteristic roots. We have three cases

• Suppose the roots r1, r2, · · · , rp are distinct and real, then the set {rn1 , rn2 , ..., rnp }
is a fundamental set of solutions and the general solution is given by

un =

p∑
i=1

cir
n
i , (2.12)

where c1, c2, ..., cp ∈ R.

• If the roots are distinct complex roots then the general solution could be written

in the form (2.12), which can be written in polar form

rj = ρje
iθj ,

but the complex roots appear in pairs, i.e, if rj is a root then rj is also a root. So

the general solution is

un =
m∑
j=1

rnj [cj cos(nθj) + ĉj sin(nθj)].

• Suppose that the characteristic roots r1, r2, ..., rk are distinct with multiplicities

m1,m2, ...,mk, respectively, such that
k∑
i=1

mi = p, then the general solution is

k∑
i=1

rni (ci0 + ci1n+ ...+ cimi−1n
mi−1)

where cij ’s ∈ R.

Example 2.5. Write the general solutions of the following difference equations:

1. un+3 − 7un+2 + 16un+1 − 12un = 0.

Solution. The characteristic equation is

rn+3 − 7rn+2 + 16rn+1 − 12rn = 0,

10



which implies that

r3 − 7r2 + 16r − 12 = 0.

So the characteristic roots are r1 = 3 and r2 = r3 = 2 and the general solution is

un = c13
n + c22

n + c3n2n.

�

2. un+2 + 16un = 0.

Solution. The characteristic equation is

rn+2 + 16rn = 0,

which implies that

r2 + 16 = 0.

So the characteristic roots are r = 4i and −4i and the general solution is

un = 4n

(
c1 cos

(
nπ

2

)
+ c2 sin

(
nπ

2

))
.

�

Now, we want to focus our attention on solving the pth order linear non-homogeneous

equation

ap(n)un+p + ap−1(n)un+p−1 + · · ·+ a0(n)un = b(n), (2.13)

where a0(n) 6= 0 and ap(n) 6= 0 for all n ≥ n0. The sequence b(n) is called the forcing

or external term. This equation represent a physical system in which b(n) is the input

and un is the output.

Theorem 2.5.3. [12] If u1(n) and u2(n) are solutions of equation (2.13), then un =

u1(n)− u2(n) is a solution of the corresponding homogeneous equation of (2.13).

Proof. Suppose u1(n) and u2(n) are two solutions of equation (2.13), so

ap(n)u1(n+ p) + ap−1u1(n+ p− 1) + · · ·+ a0u1(n) = b(n),

and

ap(n)u2(n+ p) + ap−1(n)u2(n+ p− 1) + · · ·+ a0u2(n) = b(n).

11



Now, subtract the last two equations, then we get

ap(n)

(
u2(n+ p)− u1(n+ p)

)
+ ap−1(n)

(
u2(n+ p− 1)− u1(n+ p− 1)

)
+

· · ·+ a0

(
u2(n)− u1(n)

)
= 0.

So u2(n)− u1(n) is a solution of the corresponding homogeneous equation.

Theorem 2.5.4. [12] Any solution un of equation (2.13) can be written as

un = up(n) + uh(n);

where uh is the general solution of the corresponding homogeneous equation, and up is

a particular solution of the non-homogeneous equation.

Proof. Suppose un and up(n) are two solutions of equation (2.13), then by theorem

(2.5.3), un − up(n) is a solution of the corresponding homogeneous equation, so

un − up(n) = uh(n).

This implies un = up(n) + uh(n).

As a consequence to theorem (2.5.4), we are left with the problem of finding a particular

solution to a given non-homogeneous equation (2.13). First, we want to consider the

case where the coefficients ai’s are constant and b(n) is a linear combination or products

of the functions

kn, sin(bn), cos(bn), or np.

For this case we use the method of Undetermined coefficients to compute up(n).

We can summarize this method by the following three steps:

• Solve the corresponding homogeneous equation.

• Verify that b(n) is a linear combination of the functions in the Table (2.1). If b(n)

isn’t in a form in Table (2.1), then the method can’t be applied.

• To determine the coefficients of the particular solution, we substitute the form of

the solution in the non-homogeneous equation.

Example 2.6. Solve the difference equations

12



Table 2.1: Particular Solutions up(n).

b(n) up(n)

kn ckn

np c0 + c1n+ ...+ cpn
p

npkn kn(c0 + c1n+ ...+ cpn
p)

sin(an), or cos(an) c1 sin(an) + c2 cos(an)

kn sin(an), or kn cos(an) kn(c1 sin(an) + c2 cos(an))

1. un+2 − un+1 − 6un = 36n.

Solution. The characteristic equation is

rn+2 − rn+1 − 6rn = 0,

which implies that

r2 − r − 6 = 0.

So the characteristic roots are r = 3 and −2 and the solution of the homogeneous

equation is

un = c13
n + c2(−2)n.

Now, to find the particular solution, let

up(n) = an+ b,

substitute in the equation, we get

a(n+ 2) + b− a(n+ 1)− b− 6a(n)− 6b = 36n,

this implies that

an+ 2a+ b− an− a− b− 6an− 6b = 36n,

so a = −6 and b = −1. The general solution is

un = c13
n + c2(−2)n − 6n− 1.

�

2. un+2 + 4un = 2n sin(nπ2 ).

13



Solution. The characteristic equation is

rn+2 + 4rn = 0,

which implies that

r2 + 4 = 0.

So the characteristic roots are r = 2i and r = −2i, so the solution of the homoge-

neous equation is

un = 2n

(
c1 sin

(
nπ

2

)
+ c2 cos

(
nπ

2

))
.

In this case, uh(n) and b(n) are linearly dependent and b(n) is a linear combination

of the form of functions in Table(2.1), so the particular solution from Table (2.1)

is multiplied by n and it is of the form

up(n) = n2n

(
ĉ1 sin

(
nπ

2

)
+ ĉ2 cos

(
nπ

2

))
,

substitute it in the non-homogeneous equation, we get

up(n) =
−n
4

sin

(
nπ

2

)
.

So the general equation is

un = 2n

(
c1 sin

(
nπ

2

)
+ c2 cos

(
nπ

2

))
− n

4
sin

(
nπ

2

)
.

�

But if we look at the general non-homogeneous linear difference equation, we have no

general method for solving them. Sometimes, we can guess one solution to this equation,

then use the reduction of order method to find a second linearly independent solution.

Also, there are other methods for linear difference equations which aren’t included in

this section as the z-transform.

2.6 Nonlinear Difference Equations

In a linear difference equations, every term of the equation contains at most one of

the elements of the sequence {un}, and the elements occur only “as themselves“, they

14



are not raised to any power (other than one). In a nonlinear difference equation, all

these restrictions are lifted. Methods of solution for the two different types of equations

are very different and the solutions exhibit very different properties. Over a century

ago, there was no standard method for finding analytic solutions to nonlinear difference

equations. A simple technique could be used to obtain a great deal of information

about nonlinear difference equations is to use a fixed-point analysis. The idea is to find

particular points for which the solution is fixed, which are not included in this work.

In the next Chapter, we introduce a method for nonlinear difference equations, using a

method that is very important in solving nonlinear differential equations. This method

was developed by Sophus Lie by the end of the 19th century. Meada (1987) has shown

that ordinary difference equations can be simplified using Lie’s idea.

In this section, we focus on the nonlinear equations which can be transformed into linear

equations.

• Type one. Ricatti Equations: Difference equations has the form

un+1un + a(n)un+1 + b(n)un = g(n). (2.14)

To solve equation (2.14), we consider the following two cases

1. If g(n) ≡ 0, then we let

xn =
1

un
,

substitute in equation (2.14), we obtain

1

xn+1

1

xn
+ a(n)

1

xn+1
+ b(n)

1

xn
= 0,

then multiply by xn+1xn to get

b(n)xn+1 + a(n)xn + 1 = 0;

which is linear difference equation.

2. If g(n) 6≡ 0, then we let

un =
xn+1

xn
− a(n). (2.15)

15



Now, substitute (2.15) into (2.14)

un+1un + a(n)un+1 + b(n)un = un+1(un + a(n)) + b(n)un

=

(
xn+2

xn+1
− a(n+ 1)

)(
xn+1

xn

)
+ b(n)

(
xn+1

xn
− a(n)

)

=
xn+2

xn
− a(n+ 1)xn+1

xn
+
b(n)xn+1

xn
− a(n)b(n)

= g(n),

that is,

xn+2

xn
− a(n+ 1)xn+1

xn
+
b(n)xn+1

xn
− a(n)b(n) = g(n),

multiply by xn, we get

xn+2 + (b(n)− a(n+ 1))xn+1 − (g(n) + a(n)b(n))xn = 0,

which is linear difference equation.

• Type 2. Equations of general Riccati type:

un+1 =
a(n)un + b(n)

c(n)un + d(n)
, (2.16)

where c(n) 6= 0, and a(n)d(n)− b(n)c(n) 6= 0 for all n ≥ 0.

To solve it, we let

c(n)un + d(n) =
zn+1

zn
,

then we substitute

un =
zn+1

c(n)zn
− d(n)

c(n)
,

into equation (2.16), we obtain(
zn+2

c(n+ 1)zn+1
− d(n+ 1)

c(n+ 1)

)(
zn+1

zn

)
= a(n)

(
zn+1

c(n)zn
− d(n)

c(n)

)
+ b(n).

Multiply this equation by c(n+ 1)zn, we get

zn+2−d(n+1)zn+1−a(n)
c(n+ 1)zn+1

c(n)
+

(
a(n)d(n)c(n+ 1)

c(n)
−b(n)c(n+1)

)
zn = 0,

which is equivalent to

zn+2−

(
d(n+1)−a(n)

c(n+ 1)

c(n)

)
zn+1+

(
a(n)d(n)c(n+ 1)

c(n)
−b(n)c(n+1)

)
zn = 0,

16



this equation is of the form

zn+2 + g1(n)zn+1 + g2(n)zn = 0,

which is linear difference equation.

Example 2.7. Solve the difference equation

un+1 =
2un + 4

un − 1
.

Solution. Here a = 2, b = 4, c = 1, and d = −1. Hence

ad− bc = 2(−1)− 4(1) = −6 6= 0,

so we let

un − 1 =
zn+1

zn
, (2.17)

we obtain

zn+2 − zn+1 − 6zn = 0.

The characteristic equation is

rn+2 − rn+1 − 6rn = 0,

which implies that

r2 − r − 6 = 0,

so the characteristic roots are: r = 3 and r = −2 and the general solution is

zn = c13
n + c2(−2)n,

where c1 and c2 ∈ R. From (2.17) we have

un =
c1(3)n+1 + c2(−2)n+1

c1(3)n + c2(−2)n
+ 1

=
4c1(3)n − c2(−2)n

c1(3)n + c2(−2)n
,

where c1 and c2 ∈ R. �
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• Type 3. Homogeneous Difference Equations: Homogeneous Difference

Equations are equations of the form

g

(
un+1

un
, n

)
= 0, where un 6= 0.

To solve difference equations of this form, we let

zn =
un+1

un
,

after this substitution we get a difference equation which is linear in zn.

Example 2.8. Solve the difference equation

u2n+1 − 2un+1un − 3u2n = 0. (2.18)

Solution. Multiplying equation (2.18) by 1
u2n

, we obtain

u2n+1

u2n
− 2

un+1

un
− 3 = 0,

so we let

zn =
un+1

un
,

we get

z2n − 2zn − 3 = 0,

so zn = 3 or zn = −1, which implies

un+1 = 3un or un+1 = −un,

which are linear difference equations, whose solutions are

un = c13
n or un = c2(−1)n,

where c1, c2 ∈ R. �

• Type 4. Consider the difference equation:

uk1n+pu
k2
n+p−1...u

kp+1
n = g(n).

To solve this equation, we let

zn = lnun,

18



which implies

k1zn+p + k2zn+p−1 + ...+ kp+1zn = ln g(n),

which is linear in zn.

Example 2.9. Solve

un+2 =
u3n+1

u2n
.

Solution. Let

zn = lnun,

then we obtain

zn+2 − 3zn+1 + 2zn = 0.

The characteristic equation is:

rn+2 − 3rn+1 + 2rn = 0,

which implies that

r2 − 3r + 2 = 0,

so the characteristic roots are r = 2 and r = 1. The general solution is

zn = c12
n + c2,

where c1 and c2 ∈ R. Thus,

un = exp(c12
n + c2).

�

2.7 Taylor Series

Definition 2.7.1. [3] If f(x) is a function which is infinitely differentiable at a, the

Taylor Series of the function f(x) at/about a is the power series

T (x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · · .
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If a = 0, then this series is called the Maclaurin Series of the function f given by

T (x) =
∞∑
n=0

f (n)(0)

n!
xn

= f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · · .

If T (x) is defined in an open interval around a, then it is differentiable at a, since it

is a power series. Furthermore, every derivative of T (x) at a equals the corresponding

derivative of f(x) at a.

Theorem 2.7.1. [3](Taylor’s Formula with Remainder) Let f be a function whose (n

+ 1)th derivative f (n+1)(x) exists for each x in an open interval I containing a. Then,

for each x ∈ I,

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +Rn(x),

where the remainder Rn(x) is given by

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

for some c between x and a.

Example 2.10. Find the Taylor Series for lnx about x = 1.

Solution. Calculating the derivatives of lnx and evaluating them at x = 1 gives

f(x) = lnx ⇒ f(1) = 0,

f ′(x) =
1

x
⇒ f ′(1) = 1,

f ′′(x) =
−1

x2
⇒ f ′′(1) = −1,

f ′′′(x) =
2

x3
⇒ f ′′′(1) = 2,

from this, we obtain the pattern that

f (n)(1) = (−1)n+1(n+ 1)!

It follows that the Taylor Series for lnx, centered at a = 1, is

lnx = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · .

�
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2.8 Method Of Characteristics

In this section, we describe a general technique for solving a special first-order partial

differential equations.

A first order partial differential equation is quasi linear if it is linear in the derivatives

of the dependent variables. Each term is a product of a function f(x, y, u) and 1 or

derivatives of u. That is, each linear first order partial differential equation is quasi

linear but the converse isn’t true.

Example 2.11. Examples of quasi linear partial differential equations

• ux + uy + u2 = 0.

• ux + u3uy = 5xy.

• ux + 3x3yuy = 2u.

Any first order quasi linear PDE can be written as

a(x, y, z)zx + b(x, y, z)zy = c(x, y, z), (2.19)

Such equations occur in a variety of nonlinear wave propagation problems. Let us assume

that an integral surface z = z(x, y) of equation (2.19) can be found. Writing this integral

surface in implicit form as

F (x, y, z) = z(x, y)− z = 0.

Note that the gradient vector ∇F = 〈zx, zy,−1〉 is normal to the integral surface

F (x, y, z) = 0. The equation (2.19) may be written as

azx + bzy − c = 〈a, b, c〉 · 〈zx, zy,−1〉 = 0. (2.20)

This shows that the vector 〈a, b, c〉 and the gradient vector ∇F are orthogonal. In other

words, the vector 〈a, b, c〉 lies in the tangent plane of the integral surface z = z(x, y)

at each point in the (x, y, z)-space where ∇F 6= 0. At each point (x, y, z), the vector

〈a, b, c〉 determines a direction in (x, y, z)-space is called the characteristic direction. We

can construct a family of curves that have the characteristic direction at each point. If

the parametric form of these curves is

x = x(t), y = y(t), and z = z(t), (2.21)

21



then we must have

dx

dt
= a(x(t), y(t), z(t)),

dy

dt
= b(x(t), y(t), z(t)),

dz

dt
= c(x(t), y(t), z(t)), (2.22)

because 〈dxdt ,
dy
dt ,

dz
dt 〉 is the tangent vector along the curves. The solutions of (2.22) are

called the characteristic curves of the quasi linear equation (2.19). We assume that

a(x, y, z), b(x, y, z), and c(x, y, z) are sufficiently smooth and do not all vanish at the

same point. Then, the theory of ordinary differential equations ensures that a unique

characteristic curve passes through each point (x0, y0, z0). The initial value problem

(IV P ) for equation (2.19) requires that z(x, y) be specified on a given curve in (x, y)-

space which determines a curve C in (x, y, z)-space referred to as the initial curve. To

solve this IV P , we pass a characteristic curve through each point of the initial curve C.

If these curves generate a surface known as integral surface. This integral surface is the

solution of the IV P .

Remark 1. The characteristics equations (2.22) can be expressed in the nonparametric

form as
dx

a
=
dy

b
=
dz

c
. (2.23)

Below, we shall describe a method for finding the general solution of equation (2.19).

This method is due to Lagrange. Hence, it is usually referred to as the method of

characteristics or the method of Lagrange.

The method of characteristics

It is a method of solution of quasi linear PDE which is stated in the following result.

Theorem 2.8.1. [2] The general solution of the quasi linear PDE (2.19) is

F (u, v) = 0, (2.24)

where F is an arbitrary function and u(x, y, z) = c1 and v(x, y, z) = c2 form a solution

of the equations (2.23).

Proof. If u(x, y, z) = c1 and v(x, y, z) = c2 satisfy the equation (2.19) then the equations

uxdx+ uydy + uzdz = 0,

vxdx+ vydy + vzdz = 0,

are compatible with equation (2.23). Thus, we must have

aux + buy + cuz = 0,
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avx + bvy + cvz = 0.

Solving these equations for a, b and c, we obtain

a
∂(u,v)
∂(y,z)

=
b

∂(u,v)
∂(z,x)

=
c

∂(u,v)
∂(x,y)

. (2.25)

Differentiate F (u, v) = 0 with respect to x and y, respectively, to have

∂F

∂u

{
∂u

∂x
+
∂u

∂z

∂z

∂x

}
+
∂F

∂v

{
∂v

∂x
+
∂v

∂z

∂z

∂x

}
= 0,

and
∂F

∂u

{
∂u

∂y
+
∂u

∂z

∂z

∂y

}
+
∂F

∂v

{
∂v

∂y
+
∂v

∂z

∂z

∂y

}
= 0.

Eliminating ∂F
∂u and ∂F

∂v from these equations, we obtain

∂z

∂x

∂(u, v)

∂(y, z)
+
∂z

∂y

∂(u, v)

∂(z, x)
=
∂(u, v)

∂(x, y)
. (2.26)

In view of (2.25), the equation (2.26) yields

a
∂z

∂x
+ b

∂z

∂y
= c.

Thus, we find that F (u, v) = 0 is a solution of the equation (2.19). This completes the

proof.

Example 2.12. Find the general solution of

xzx + yzy = z.

Solution. The associated system of equations are

dx

x
=
dy

y
=
dz

z
.

From the first two relation we let first

dx

x
=
dy

y
,

we get

lnx = ln y + ln c1,

this implies
x

y
= c1.
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Similarly, we let
dz

z
=
dy

y
,

we get
z

y
= c2,

where c1 and c2 are arbitrary constants. Thus, the general solution is the general integral

given by

F

(
x

y
,
z

y

)
= 0,

where F is an arbitrary function. �
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Chapter 3

Symmetry Method

Symmetry is a universal concept in nature, science, and art. A symmetry of a geometrical

object is an invertible transformation whose action specifies the object to itself. The

points themselves may be changed, but the whole object stays as it is. For example,

consider the rotation of a regular Hexagon about its diameters ab or cd or ef (see Figure

3.1). The Hexagon is mapped to itself if the angle of rotation is an integer multiple of
π
3 , so this transformation is a symmetry.

Figure 3.1: Symmetries Of A Hexagon

Definition 3.0.1. Transformation or a mapping of a region R1 into a region R2 is

a rule that assign’s to each point p ∈ R1 a unique point q ∈ R2.

Definition 3.0.2. [9] Trivial Symmetry is the transformation that maps each point

to itself.

Remark 2. From the Definition (3.0.2), every object has at least one symmetry, which

is the trivial symmetry.

Any symmetry must preserves the shape of the object, that is the distance between any

two points of the object must be preserved, consequently, the only transformations of

Euclidean space are consisting of rotations, translations, and reflections.

So in summary, we can define symmetry in the following definition.
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Definition 3.0.3. [9] A transformation is a symmetry if it satisfies the following prop-

erties:

1. The transformation preserves the structure.

2. The transformation is a diffeomorphism, that is a smooth invertible mapping whose

inverse is also smooth.

3. The transformation maps the object to itself.

Definition 3.0.4. [10] A group is a set G together with a group operation (usually called

multiplication) such that for any two elements g and h of G, the product g · h is again

an element of G. The group operator is required to satisfy the following axioms:

• Associativity. If g, h and k are elements of G, then

(g · h) · k = g · (h · k).

• Identity element. There is a distinguished element e of G, called the identity ele-

ment, which has the property that

e · g = g · e = g

for all g ∈ G.

• Inverses.For each g in G there is an inverse, denoted g−1 with the property

g · g−1 = g−1 · g = e

.

Theorem 3.0.1. [7] Let G be the set of all symmetries of a geometrical object, then G

is a group.

Proof. Let Γa and Γb be two symmetries of an object. Then the composite transforma-

tions ΓaΓb, and ΓbΓa are symmetries of this object, because they are invertible and they

keep the object unchanged.

From Remark (2) the trivial symmetry denoted by Γ0 is the identity map, that is, for

any Γa ∈ G,

ΓaΓ0 = Γ0Γa = Γa.
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Furthermore, for any Γa ∈ G, the transformation that reverts the object to its original

state, is the inverse of a transformation, that is,

ΓaΓ
−1
a = Γ−1a Γa = Γ0.

It’s clear that, composition of transformations is associative, so G is group.

Remark 3. If Γa and Γb are two symmetries of an object with the property that ΓaΓb =

ΓbΓa, then G is abelian.

Example 3.1. The symmetries of the Euclidean real line R include every translation:

Γa : x→ x+ a,

where a is a fixed real number. We note that Γa is a symmetry for all a ∈ R.

3.1 Symmetries Of Difference Equations

A transformation of a difference equation is a symmetry if every solution of the trans-

formed equation is a solution of the original equation and vice verse.

Example 3.2. Let

Γa : un → ûn = aun, ∀ a ∈ R− {0},

be a transformation on a linear homogeneous difference equation of order p:

ap(n)un+p + ap−1(n)un+p−1 + · · ·+ a0(n)un = 0.

Then Γa is a symmetry of the difference equation for all a ∈ R− {0}, since if

U1(n), U2(n), · · · , Up(n) are linearly independent solutions, then the general solution is

un =

p∑
i=1

ciUi(n).

The transformation Γa maps this solution to

ûn = a

p∑
i=1

ciUi(n) =

p∑
i=1

ĉiUi(n), where ĉi = aci,

for all i = 1, 2, · · · , p. So ûn is a solution of the original equation and vice verse. Thus,

Γa is a symmetry for all a ∈ R− {0}.

Consider the set of transformations G = {Γa : a ∈ R − {0}}. Then G is a group with

the composition ΓaΓb = Γab, for all a, b ∈ R. Note that, Γ1 is the identity map and

27



Γ−1a = Γa−1 = Γ 1
a
. Furthermore, ûn is an analytic function of the parameter a and each

element Γa in G has the property of a near identity map for all a sufficiently near 1.

Definition 3.1.1. [6] Consider the following point transformation

Γa : x→ x̂(x; a), a ∈ (a0, a1),

where a0 < 0 and a1 > 0. Then Γa is one parameter local Lie group if the following

conditions are satisfied

1. Γ0 is the identity map, that is, x̂ = x when a = 0.

2. ΓaΓb = Γa+b, ∀ a, b sufficiently close to 0.

3. Each x̂ can be represented by a Taylor series in a, so

x̂(x; a) = x+ aξ(x) +O(a2).

The term ‘point‘ is used because x̂ depends only on the point x.

From conditions 1 and 2 we have Γ−1a = Γ−a when | a | is sufficiently small. A local Lie

group may not be a group, except if it satisfies the four group axioms.

In general, a one parameter local Lie group of symmetries of a difference equation will

depend on n and un.

For simplicity, we call symmetries that belong to a one parameter local Lie group, Lie

symmetries.

Example 3.3. [7] Consider the difference equation:

un+1 − un = 0. (3.1)

and the transformation

Γε : (n, un)→ (n̂, ûn) = (n, un + ε); ε ∈ R (3.2)

Γε is a one parameter local Lie group, since

Γ0 : (n, un)→ (n̂, ûn) = (n, un),

so Γ0 is the identity map and

Γδ : (n, un)→ (n, un + δ),

which implies that

ΓεΓδ : (n, un + δ)→ (n, un + δ + ε).
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Thus,

ΓεΓδ = Γε+δ.

Moreover, each ûn can be represented as a Taylor series in ε, and Γε is a symmetry for

equation (3.1) since the solution of (3.1) is un = c, and every transformation with ε 6= 0

maps each solution, un = c to ûn = c+ ε, which can be written as ûn = ĉ; ĉ = c+ ε. So

Γε is a Lie symmetry.

Note that n is a discrete variable that can’t be changed by an arbitrarily small amount,

so every one parameter local Lie group of symmetries must leave n unchanged. That

is, n̂ = n for all Lie symmetries of (3.1). The same argument applies to all difference

equations.

Throughout the thesis, we restrict our attention to Lie symmetries for which ûn depends

on n and un only, which are called Lie point symmetries and take the form

n̂ = n, ûn = un + εQ(n, un) +O(ε2), (3.3)

where Q(n, un) is a function of n and un that depends on the difference equation and

is called a characteristic of the local Lie group. In example (3.3), the characteristic

Q(n, un) is 1.

If we replace n by n+ k in equation (3.3) we get

ûn+k = un+k + εQ(n+ k, un+k) +O(ε2),

which is called the prolongation formula for Lie point symmetries.

In order to invest symmetries and to use them to obtain exact solutions for difference

equations, we introduce the change of variable. Symmetries can also be used to simplify

problems and to understand bifurcations of nonlinear difference equations.

Now consider the effect of changing variables from (n, un) to (n, sn), and as (3.3) is a

symmetry for each ε sufficiently close to zero, we can apply Taylor’s theorem about

ε = 0, to obtain

ŝn = s(n̂, ûn)

= s(n, ûn)

= s(n, un + εQ(n, un) +O(ε2)) Now apply Taylor’s theorem about ε = 0

= s(n, un + εQ(n, un)) |ε=0 +(ε− 0)
ds

dε
|ε=0 +O(ε2)

= s(n, un) + ε(
ds

dûn
)(
dûn
dε

) |ε=0 +O(ε2)

= s(n, un) + εs′(n, un)Q(n, un) +O(ε2).
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If we denote the characteristic function with respect to (n, sn) by Q̂(n, sn) then we get

ŝn = sn + εQ̂(n, sn) +O(ε2)

= s(n, un) + εs′(n, un)Q(n, un) +O(ε2).

So we get:

Q̂(n, sn) = s′(n, un)Q(n, un). (3.4)

The coordinate sn is called the canonical coordinate.

Example 3.4. [7] Consider changing the coordinates from (n, un) to (n, sn), and sym-

metries for sn,

(n̂, ŝn) = (n, sn + ε), ε ∈ R.

Then the characteristic with respect to (n, sn) is Q̂(n, sn) = 1, so by (3.4),

s′(n, un)Q(n, un) = 1,

which implies that

s(n, un) =

∫
dun

Q(n, un)
(3.5)

Now, as an example if Q(n, un) = un − 1, then the canonical coordinate according to

equation (3.5) is

s(n, un) =

∫
dun
un − 1

=

ln(un − 1), |un| > 1

ln(1− un), |un| < 1

In this example, the map from un to sn isn’t injective; it can’t be inverted from sn to un

except if we specify whether |un| is greater or less than 1.

3.2 Lie Symmetries Of A Given First Order Difference

Equation

In this section, we want to solve a given first order difference equation

un+1 = w(n, un), (3.6)

by a one parameter local Lie group of symmetries.

For any transformation of a difference equation to be a symmetry, the set of solutions
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must be mapped to itself so the symmetry condition of equation (3.6) must be satisfied

ûn+1 = w(n̂, ûn) when un+1 = w(n, un). (3.7)

From the symmetry condition (3.7), we get

ŵ(n, un) = w(n̂, ûn)

= w(n, un + εQ(n, un) +O(ε2))

= w(n, un) + εw′(n, un)Q(n, un) +O(ε2).

Also, we have

ŵ(n, un) = ûn+1 = un+1 + εQ(n+ 1, un+1) +O(ε2).

So,

Q(n+ 1, un+1) = w′(n, un)Q(n, un). (3.8)

This is called the linearized symmetry condition (LSC) for the given difference equation

(3.6).

The linearized symmetry condition (3.8) is a linear functional equation which is difficult

to solve.

Example 3.5. [7] The linearized symmetry condition for the equation

un+1 − un = 0,

is

Q(n+ 1, un+1) = Q(n, un),

since un+1 = un, the LSC is equivalent to

Q(n+ 1, un+1) = Q(n+ 1, un) = Q(n, un).

This condition has the general solution

Q(n, un) = f(un),

where f is an arbitrary function.

We can find the general solution of the linearized symmetry condition if we can solve

the functional equation (3.8). But some functional equations can’t be solved. However,

there is no need to find the general solution of the linearized symmetry condition, as a
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single nonzero solution of this condition is sufficient to determine the general solution of

the difference equation. For first order difference equations, a practical approach is to

use an ansatz (trial solution) as a general solution of the linearized symmetry condition.

Many physically important Lie point symmetries have characteristics of the form:

Q(n, un) = c1(n)u2n + c2(n)un + c3(n), (3.9)

where c1(n), c2(n) and c3(n) are functions of n. By substituting (3.9) into the linearized

symmetry condition (3.8) and comparing powers of un, we obtain the coefficients c1(n),

c2(n) and c3(n).

Example 3.6. [7] Determine the Lie point symmetries of

un+1 =
un

1 + nun
; n ≥ 1. (3.10)

Solution. In this example, w(n, un) = un
1+nun

. Hence,

w′(n, un) =
1

(1 + nun)2
,

so the linearized symmetry condition is

Q(n+ 1, un+1) =
1

(1 + nun)2
Q(n, un).

Since we have a first order difference equation, we can use the ansatz (3.9), to get

c1(n+1)u2n+1+c2(n+1)un+1+c3(n+1) =
1

(1 + nun)2
(c1(n)u2n+c2(n)un+c3(n)), (3.11)

substituting un+1 = un
1+nun

, we get

c1(n+1)
u2n

(1 + nun)2
+c2(n+1)

un
(1 + nun)

+c3(n+1) =
1

(1 + nun)2
(c1(n)u2n+c2(n)un+c3(n)).

Multiplying the last equation by (1 + nun)2

c1(n+ 1)u2n + c2(n+ 1)(1 + nun)un + c3(n+ 1)(1 + nun)2 = c1(n)u2n + c2(n)un + c3(n),

hence,

c1(n+1)u2n+ c2(n+1)un+nc2(n+1)u2n+ c3(n+1)+2nc3(n+1)un+n2c3(n+1)u2n =

c1(n)u2n + c2(n)un + c3(n).
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Now, comparing powers of un, we obtain

c1(n+ 1) + nc2(n+ 1) + n2c3(n+ 1) = c1(n), (3.12)

c2(n+ 1) + 2nc3(n+ 1) = c2(n), (3.13)

c3(n+ 1) = c3(n). (3.14)

We solve this system by backward substitution, starting by equation (3.14), which is a

first order linear difference equation whose solution is

c3(n) = α1,

where α1 is a constant. Substitute for c3(n) in equation (3.13), we obtain the first order

linear difference equation

c2(n+ 1)− c2(n) = −2nα1,

which has the general solution using formula (2.7)

c2(n) = α2 −
n−1∑
i=0

(2α1i)

= α2 − 2α1
n(n− 1)

2
= α2 − α1n(n− 1),

where α1, α2 ∈ R.
Now, we substitute for c1(n) and c2(n) into equation (3.12). We get the first order

difference equation

c1(n+ 1)− c1(n) = −α2n+ α1n
3,

which has the general solution

c1(n) = α3 −
n−1∑
i=0

(α2i) +
n−1∑
i=0

(α1i
3)

= α3 − α2
n(n− 1)

2
+ α1

n2(n− 1)2

4
,

where α1, α2 and α3 ∈ R. So the characteristic is

Q(n, un) =

(
α3 − α2

n(n− 1)

2
+ α1

n2(n− 1)2

4

)
u2n+

(
α2 − α1n(n− 1)

)
un + α1.

�
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Now, we know how to find a characteristic of first order difference equations, the re-

maining question is how can we use a characteristic to determine the general solution of

the difference equation.

Consider the canonical coordinate (3.4), and as in example (3.4) let Q̂(n, un) = 1, then

sn =

∫
dun

Q(n, un)
.

To use a canonical coordinate to simplify or solve a given difference equation, firstly,

we write the difference equation as a difference equation for sn, then if we can solve

this equation, it remains to write the solution in terms of the original variables, and

this happens only if we can invert the map from un to sn . This condition is called

compatibility condition, and sn is called a compatible canonical coordinate.

Example 3.7. [7] Find the general solution of equation (3.10) in example (3.6) using

Lie symmetry

un+1 =
un

1 + nun
.

Solution. As we have found a characteristic Q(n, un), we suppose α1 = 0, α2 = 0 and

α3 = 1 for ease of computation.

So we obtain

Q(n, un) = u2n.

The canonical coordinate

sn =

∫
dun
u2n

=
−1

un
,

which is compatible since we can write un in terms of sn. Now we consider the difference

equation

sn+1 − sn =
−1

un+1
− −1

un
,

if we substitute un+1 = un
1+nun

, we get:

sn+1 − sn = −n,

which has the general solution:

sn = c− n(n− 1)

2
; c ∈ R,

but sn = −1
un
, so the general solution of the original difference equation is

un =
2

−2c+ n(n− 1)
; c ∈ R.

�
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3.3 Symmetries And Second Order Difference Equations

The linearized symmetry condition (LSC) for second order difference equations is given

by the same way as that for the first order difference equations.

Now, consider the difference equation

un+2 = w(n, un, un+1); n ∈ Z, (3.15)

we assume that ∂w
∂un+1

6= 0, (this condition ensures that the equation is truely second

order), the symmetry condition is

ûn+2 = w(n̂, ûn, ûn+1), when (3.15) holds. (3.16)

As before, we restrict our attention to Lie symmetries of the form

n̂ = n, ûn+p = un+p + εQ(n+ p, un+p) +O(ε2),

substitute into (3.16) to get

w(n̂, ûn, ûn+1) = w(n, un + εQ(n, un), un+1 + εQ(n+ 1, un+1)). (3.17)

Find Taylor series of the right hand side about ε = 0, we get

w(n̂, ûn, ûn+1) = w(n, un, un+1) + ε

(
∂w

∂ûn+1

∂ûn+1

∂ε
|ε=0 +

∂w

∂ûn

∂ûn
∂ε
|ε=0

)
+O(ε2)

= w(n, un, un+1) + ε

(
∂w

∂un+1
Q(n+ 1, un+1) +

∂w

∂un
Q(n, un)

)
+O(ε2),

(3.18)

also we have

w(n̂, ûn, ûn+1) = ûn+2 = w(n, un, un+1) + εQ(n+ 2, un+2) +O(ε2). (3.19)

From equation (3.18) and (3.19), we get the linearized symmetry condition (LSC) for

second order difference equations

Q(n+ 2, un+2) =
∂w

∂un+1
Q(n+ 1, un+1) +

∂w

∂un
Q(n, un)

To simplify this formula, we introduce the definition of the infinitesimal generator.
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Definition 3.3.1. [8] The infinitesimal generator X is

X =

p−1∑
k=0

(SkQ(n, un))
∂

∂un+k
,

where Sk is the forward shift operator such that Skun = un+k and p is the order of the

difference equation.

So the Linearized symmetry condition for second order difference equations can be writ-

ten as

S2Q−Xw = 0, (3.20)

which is a linear functional equation for the characteristics Q(n, un). However, func-

tional equation are generally hard to solve. Lie symmetries are diffeomorphisms, that

is, Q(n, un) is a smooth function, so the linearized symmetry condition can be solved by

the method of differential elimination.

To explain the steps that transform equation (3.20) from a functional equation to a

differential equation, we consider the difference equations that satisfy the conditions
∂w

∂un+1
6= 0 and ∂w

∂un
6= 0. We follow the steps

Firstly, by eliminating Q(n + 2, w) and Q(n + 1, un+1), we can form an ordinary dif-

ferential equation for Q(n, un). To achieve this objective we differentiate the linearized

symmetry condition with respect to un keeping w fixed and we consider un+1 to be a

function of n, un and w. Therefore, we apply the differential operator (L):

L =
∂

∂un
+
∂un+1

∂un

∂

∂un+1
,

but
∂un+1

∂un
= − ∂w/∂un

∂w/∂un+1
.

The first term of the functional equation (3.20) is eliminated by this differential operator,

since we differentiate with respect to un keeping w fixed, so we obtain

∂

∂un

(
Q(n+ 2, w)

)
= 0,

∂

∂un

(
∂w

∂un
Q(n, un)

)
=

∂w

∂un
Q′(n, un) +

∂2w

∂u2n
Q(n, un),

∂

∂un

(
∂w

∂un+1
Q(n+ 1, un+1)

)
=

∂2w

∂un∂un+1
Q(n+ 1, un+1),
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and

∂

∂un+1

(
Q(n+ 2, w)

)
= 0,

∂

∂un+1

(
∂w

∂un
Q(n, un)

)
=

∂2w

∂un+1∂un
Q(n, un),

∂

∂un+1

(
∂w

∂un+1
Q(n+ 1, un+1)

)
=

∂w

∂un+1
Q′(n+ 1, un+1) +

∂2w

∂u2n+1

Q(n+ 1, un+1).

This implies that

(
− ∂w

∂un
Q′(n, un)− ∂2w

∂u2n
Q(n, un)− ∂2w

∂un∂un+1
Q(n+ 1, un+1)

)
+(

∂un+1

∂un

)(
− ∂2w

∂un+1∂un
Q(n, un)− ∂w

∂un+1
Q′(n+1, un+1)−

∂2w

∂u2n+1

Q(n+1, un+1)

)
= 0.

Secondly, we can eliminate Q′(n+1, un+1) by differentiating the equation obtained in the

previous step with respect to un keeping un+1 fixed. We may have to differentiate once

more with respect to un keeping un+1 fixed. After that, we obtain an ordinary differential

equation, which can be split by gathering together all terms with the same dependence

upon un+1 and we solve it if possible, and obtain Q(n, un). To find the coefficients of the

terms of Q(n, un), we plug it in the equations that we obtained in previous steps which

can be split into a system of linear difference equations by collecting all terms with the

same dependence un and un+1. Example (3.8) illustrates this method.

Example 3.8. Find the characteristics of the equation:

un+2 =
aunun+1

un + un+1
; a ∈ R− {0}.

Solution. The LSC is

Q(n+ 2, un+2)−
∂w

∂un
Q(n, un)− ∂w

∂un+1
Q(n+ 1, un+1) = 0,

but
∂w

∂un
=

au2n+1

(un + un+1)2
=

w2

au2n
,

and
∂w

∂un+1
=

au2n
(un + un+1)2

=
w2

au2n+1

,

so
∂un+1

∂un
= −

u2n+1

u2n
,
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so the LSC is

Q(n+ 2, un+2)−
w2

au2n
Q(n, un)− w2

au2n+1

Q(n+ 1, un+1) = 0. (3.21)

To transform this functional equation to differential equation, we apply the differential

operator (L)

L =
∂

∂un
+
∂un+1

∂un

∂

∂un+1

=
∂

∂un
−
u2n+1

u2n

∂

∂un+1
,

so we get

(
∂

∂un
−
u2n+1

u2n

∂

∂un+1
)(Q(n+ 2, un+2)−

w2

au2n
Q(n, un)− w2

au2n+1

Q(n+ 1, un+1)) = 0,

but

∂

∂un
(Q(n+ 2, un+2)) = 0,

∂

∂un
(
w2

au2n
Q(n, un)) =

w2

au2n
Q′(n, un) +

−2w2

au3n
Q(n, un),

∂

∂un
(
w2

au2n+1

Q(n+ 1, un+1)) = 0,

and

∂

∂un+1
(Q(n+ 2, un+2)) = 0,

∂

∂un+1
(
w2

au2n
Q(n, un)) = 0,

∂

∂un+1
(
w2

au2n+1

Q(n+ 1, un+1)) =
w2

au2n+1

Q′(n+ 1, un+1) +
−2w2

au3n+1

Q(n+ 1, un+1),

this implies:

−w2

au2n
Q′(n, un)+

2w2

au3n
Q(n, un)−

u2n+1

u2n
(
−w2

au2n+1

Q′(n+1, un+1)+
2w2

au3n+1

Q(n+1, un+1)) = 0,

multiplying the last equation by −au
2
n

w2 , we get

Q′(n, un)− 2

un
Q(n, un)−Q′(n+ 1, un+1) +

2

un+1
Q(n+ 1, un+1) = 0, (3.22)
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now, we differentiate (3.22) with respect to un keeping un+1 fixed, we obtain

∂

∂un
(Q′(n, un)− 2

un
Q(n, un)−Q′(n+ 1, un+1) +

2

un+1
Q(n+ 1, un+1)) = 0,

but

∂

∂un
(Q′(n, un)) = Q′′(n, un),

∂

∂un
(

2

un
Q(n, un)) =

2

un
Q′(n, un) +

−2

u2n
Q(n, un),

∂

∂un
(Q′(n+ 1, un+1)) = 0,

∂

∂un
(

2

un+1
Q(n+ 1, un+1)) = 0,

so

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2n
Q(n, un) = 0,

if we multiply this equation by u2n, we get

u2nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) = 0,

which is an Euler differential equation whose solution is given by

Q(n, un) = α(n)u2n + β(n)un,

for some functions α and β of n. Substituting Q(n, un) into (3.22) gives

2α(n)un + β(n)− 2

un
(α(n)u2n + β(n)un)− 2α(n+ 1)un+1 − β(n+ 1)+

2

un+1
(α(n+ 1)u2n+1 + β(n+ 1)un+1) = 0,

simplifying, we get

−β(n) + β(n+ 1) = 0,

which is a first order linear difference equation whose solution is

β(n) = c,

where c ∈ R.

Now, we substitute Q(n, un) = α(n)u2n + cun, in (3.21) to obtain

α(n+2)u2n+2 + cun+2−
w2

au2n
(α(n)u2n+ cun)− w2

au2n+1

(α(n+1)u2n+1 + cun+1) = 0, (3.23)
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but

cun+2 − c
w2

aun
− c w2

aun+1
= cw − cw un+1

un + un+1
− cw un

un + un+1

= cw(1− un+1

un + un+1
− un
un + un+1

)

= 0,

so equation (3.23) simplifies to

α(n+ 2)w2 − 1

a
α(n+ 1)w2 − 1

a
α(n)w2 = 0,

this implies

α(n+ 2)− 1

a
α(n+ 1)− 1

a
α(n) = 0,

which is a second order linear difference equation and has the characteristic equation

rn+2 − 1

a
rn+1 − 1

a
rn = 0,

which implies that

r2 − 1

a
r − 1

a
= 0,

so the characteristic roots are

r =
1

2a
+

1

2 |a|
√

1 + 4a and r =
1

2a
− 1

2 |a|
√

1 + 4a.

Hence, we have the following cases:

1. if a = −1
4 , then

α(n) = c1(−2)n + c2n(−2)n,

where c1 and c2 ∈ R.

So the characteristic is

Q(n, un) = (c1(−2)n + c2n(−2)n)u2n + cun,

where c, c1 and c2 ∈ R.

2. ifa 6= −1
4 , then

α(n) = c1(
1

2a
+

1

2 |a|
√

1 + 4a)n + c2(
1

2a
− 1

2 |a|
√

1 + 4a)n,
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where c1 and c2 ∈ R.

So the characteristic is

Q(n, un) = (c1(
1

2a
+

1

2 |a|
√

1 + 4a)n + c2(
1

2a
− 1

2 |a|
√

1 + 4a)n)u2n + cun,

where c, c1 and c2 ∈ R.

�

Now, to invest symmetries in reducing the order of difference equations, we find a com-

patible canonical coordinate, which reduces the order by one. If the reduced equation

can be solved, then the original equation can be solved by one more integration or sum-

mation.

Definition 3.3.2. [4] A function vn is invariant under the Lie group of transformations

Γa if Xvn = 0, where X =
p−1∑
k=0

SkQ(n, un) ∂
∂un+k

.

Suppose that the characteristic Q(n, un) for the second order difference equation

un+2 = w(n, un, un+1),

is known, then the invariant vn can be found by solving the partial differential equation

Xvn = Q(n, un)
∂vn
∂un

+Q(n+ 1, un+1)
∂vn
∂un+1

= 0,

which is a quasi linear partial differential equation that can be solved using the method

of characteristics, set
dun

Q(n, un)
=

dun+1

SQ(n, un)
=
dvn
0
. (3.24)

If the invariant function vn+1(n, un, un+1) can be written as a function of n and vn only,

then vn can reduce the order of the difference equation by one to obtain

un+1 = f(n, un, vn),

for some function f . This equation is a first order difference equation.

Finally, as we mentioned in the previous section, to solve the first order equation, we

need to obtain a canonical coordinate sn.

Example 3.9. [7] Consider the equation in Example (3.8), with a = 2,

un+2 =
2unun+1

un + un+1
.
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Solution. We have seen for a = 2, the characteristic is

Q(n, un) = (c1 + c2(
−1

2
)n)u2n + cun.

To simplify calculations, take c1 = 1, c2 = 0 and c3 = 0, we obtain

Q(n, un) = u2n.

So the canonical coordinate is

sn =

∫
dun
u2n

=
−1

un
.

By equation (3.24), the invariant vn is given by

dun
u2n

=
dun+1

u2n+1

=
dvn
0
.

Taking the first

(
dun
u2n

)
and second

(
dun+1

u2n+1

)
invariants, we get

−1

un+1
=
−1

un
+ c1, which implies c1 =

−1

un+1
− −1

un
,

where c1 ∈ R. Also, we have
dun
u2n

=
dvn
0
,

which implies that

vn = c2, such that c2 = f(c1),

where c1 and c2 are constants, and f is an arbitrary function which we take to be the

identity function,so

f(c1) = c1 ⇒ c2 = c1

therefore

vn = c2 =
1

un
− 1

un+1
. (3.25)

Applying the shift operator to vn, we get

vn+1 =
1

un+1
− 1

un+2

=
1

un+1
− un+1 + un

2unun+1

=
1

2un+1
− 1

2un

= −vn
2
.
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So, we have the equation

vn+1 +
vn
2

= 0,

which is a first order linear difference equation whose solution is given by

vn = α

(
−1

2

)n
,

where α ∈ R. It follows that

sn+1 − sn =
−1

un+1
− −1

un
= vn = α

(
−1

2

)n
,

this equation is a first order linear difference equation whose solution is given by

sn = s0 +
n−1∑
k=0

α

(
−1

2

)k
= s0 + α

(1− (−12 )n)

1− −12

= s0 + α
2(1− (−12 )n)

3
, (3.26)

but sn = −1
un

, so

un =
−1

s0 + α
2(1−(−1

2
)n)

3

=
−1

−1
u0

+ α
2(1−(−1

2
)n)

3

=
1

1
u0
− 2

3α(1− (−12 )n)

=
1

( 1
u0
− 2α

3 ) + 2α
3 (−2)−n

=
1

ĉ1 + ĉ2(−2)−n
,

where ĉ1 and ĉ2 ∈ R, and they are not both zero. �

Example 3.10. [5] Find the exact solution of the difference equation

un+2 =
aun

1 + bunun+1
. (3.27)

Solution. The linearized symmetry condition LSC to equation (3.27) is

Q(n+ 2, w)− ∂w

∂un
Q(n, un)− ∂w

∂un+1
Q(n+ 1, un+1) = 0,
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but,
∂w

∂un
=

a

(1 + bunun+1)2
=

w2

au2n
,

and
∂w

∂un+1
=

−abu2n
(1 + bunun+1)2

=
−bw2

a
,

so the LSC is given by

Q(n+ 2, w)− w2

au2n
Q(n, un) +

bw2

a
Q(n+ 1, un+1) = 0. (3.28)

Firstly, we apply the differential operator L, given by

L =
∂

∂un
+

1

bu2n

∂

∂un+1
,

to equation (3.28) to get

∂

∂un

(
Q(n+ 2, w)− w2

au2n
Q(n, un) +

bw2

a
Q(n+ 1, un+1)

)
+(

1

bu2n

∂

∂un+1

)(
Q(n+ 2, w)− w2

au2n
Q(n, un) +

bw2

a
Q(n+ 1, un+1)

)
= 0,

but

∂

∂un

(
Q(n+ 2, w)

)
= 0,

∂

∂un

(
w2

au2n
Q(n, un)

)
=

1

au2n
w2Q′(n, un) +

−2

au3n
w2Q(n, un),

∂

∂un

(
b

a
w2Q(n+ 1, un+1)

)
= 0,

∂

∂un+1

(
Q(n+ 2, w)

)
= 0,

∂

∂un+1

(
w2

au2n
Q(n, un)

)
= 0,

∂

∂un+1

(
b

a
w2Q(n+ 1, un+1)

)
=
b

a
w2Q′(n+ 1, un+1),

this leads to

−1

au2n
w2Q′(n, un) +

2

au3n
w2Q(n, un) +

1

au2n
Q′(n+ 1, un+1) = 0,
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multiplying this equation by −au
2
n

w2 , we get

Q′(n, un)− 2

un
Q(n, un)−Q′(n+ 1, un+1) = 0, (3.29)

now, we differentiate equation (3.29) with respect to un keeping un+1 fixed. As a result

we obtain the ODE

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2n
Q(n, un) = 0,

which is a Cauchy differential equation, whose solution is given by

Q(n, un) = α(n)u2n + β(n)un. (3.30)

Next we substitute (3.30) into (3.29), we get

2α(n)un + β(n)− 2α(n+ 1)un+1 − β(n+ 1)− 2α(n)un − 2β(n) = 0,

the equation can be split by gathering together all terms with the same dependence

upon un+1

−2α(n+ 1)un+1 − (β(n+ 1) + β(n)) = 0.

Now, we compare the two sides of the last equation, to obtain

β(n+ 1) + β(n) = 0,

which is a first order linear difference equation whose general solution is

β(n) = c(−1)n,

where c is a constant. and

α(n+ 1) = 0 which implies α(n) = 0.

So

Q(n, un) = (−1)nun.

We want to find the invariant using equation (3.24),

dun
(−1)nun

=
dun+1

(−1)n+1un+1
=
dvn
0
,
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Taking the first

(
dun

(−1)nun

)
and second

(
dun+1

(−1)n+1un+1

)
invariants, we get

ln|un|+ c∗ = − ln|un+1| which implies − c∗ = ln|un+1un|,

where c∗ ∈ R, so

k1 = unun+1 where k1 = e−c
∗
,

also, we have
dun
un

=
dvn
0
,

which implies that

vn = k, such that k = f(k1),

where k1 and k are constants.

We choose f(k1) = k1, therefore

vn = unun+1. (3.31)

Applying the shift operator to vn yields

Svn = vn+1 = un+1un+2

= un+1

(
aun

1 + bunun+1

)
=

avn
1 + bvn

, (3.32)

So we have the equation

vn+1 =
avn

1 + bvn
,

which is a Riccati difference equation of type one, where g(n) = 0 so to solve it we let

zn =
1

vn
,

we get

zn+1 −
1

a
zn −

b

a
= 0,

which is a linear difference equation, whose solution is given by

zn =

z0 + nb; a = 1

z0
an + b

an(1−a) + b
a−1 ; a 6= 1

and this implies

vn =


1

z0+nb
; a = 1

an(1−a)
z0(1−a)+b(1−an) ; a 6= 1
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but z0 = 1
v0
, so

vn =


v0

1+nbv0
; a = 1

an(a−1)v0
(a−1)+bv0(an−1) ; a 6= 1

Now, we want to consider the two cases.

If a = 1, we have

vn =
v0

1 + nbv0
(3.33)

Then by equations (3.31) and (3.33) we have

vn = unun+1 =
v0

1 + nbv0
,

where v0 = u0u1. Solving the last equation for un+1 we obtain

un+1 =
v0

(1 + nbv0)un
. (3.34)

The order of Equation (3.27) has been reduced by one.

To solve equation (3.34) we need to obtain a canonical coordinate,

sn =

∫
dun

(−1)nun
= (−1)n ln|un|.

So sn+1 − sn is an invariant. Consequently,

sn+1 − sn = (−1)n+1 ln|un+1| − (−1)n ln|un|

= (−1)n+1 ln|unun+1|

= (−1)n+1 ln|vn|

= (−1)n+1 ln

∣∣∣∣ v0
1 + nbv0

∣∣∣∣, (3.35)

The general solution of (3.35) is

sn = s0 +
n−1∑
m=0

(−1)m+1 ln|vm|

= ln|u0|+
n−1∑
m=0

(−1)m+1 ln

∣∣∣∣ u0u1
1 + bu0u1m

∣∣∣∣,
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but sn = (−1)n ln|un|, so the general solution of (3.27) if a = 1 is

un = exp

(
(−1)n ln|u0|+

n−1∑
m=0

(−1)m+n+1 ln

∣∣∣∣ u0u1
1 + bu0u1m

∣∣∣∣
)

= exp

(
(−1)n ln|u0|+ (−1)n+1 ln|u0u1|+

n−1∑
m=1

(−1)m+n+1 ln

∣∣∣∣ u0u1
1 + bu0u1m

∣∣∣∣
)

= (u1)
(−1)n+1

n−1∏
m=1

(
u0u1

1 + bu0u1m

)(−1)m+n+1

,

with 1 + bu0u1m 6= 0 for all m = {1, 2, · · · , n− 1} that is

m 6= −1
bu0u1

, for all m = {1, 2, · · · , n− 1} which implies −1
bu0u1

6∈ {1, 2, · · · , n− 1}.
Now, if a 6= 1, we have

vn =
an(a− 1)v0

(a− 1) + bv0(an − 1)
. (3.36)

The canonical coordinate is

sn = s0 +

n−1∑
m=0

(−1)m+1 ln|vm|

= ln|u0|+
n−1∑
m=0

(−1)m+1 ln

∣∣∣∣ am(a− 1)v0
(a− 1) + bv0(am − 1)

∣∣∣∣,
but sn = (−1)n ln|un|, so the general solution of (3.27) if a 6= 1 is

un = exp

(
(−1)n ln|u0|+

n−1∑
m=0

(−1)m+n+1 ln

∣∣∣∣ am(a− 1)v0
(a− 1) + bv0(am − 1)

∣∣∣∣
)

= (u0)
(−1)n

n−1∏
m=0

(
am(a− 1)u0u1

(a− 1) + bu0u1(am − 1)

)(−1)m+n+1

.

�

3.4 Symmetries And Higher Order Difference Equations

In this section, we want to describe the method for finding Lie symmetries of a general

ordinary difference equation. Consider the ordinary difference equation of order p ≥ 3

of the form

un+p = w(n, un, un+1, ..., un+p−1);
∂w

∂un
6= 0. (3.37)

The linearized symmetry condition for equation (3.37) is obtained by the same way as

that for second order difference equations. Moreover, the same approach can be applied

to find all characteristics Q(n, un), but the calculations are more complicated, so it is
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necessary to use computer algebra.

The general technique for obtaining Lie point symmetry for any difference equation of

order p ≥ 2:

1. Write down the LSC for the ordinary difference equation,

S(p)Q(n, un)−Xw = 0. (3.38)

2. Apply appropriate differential operators to reduce the number of unknown func-

tions, then differentiate the LSC withe respect to suitable independent variable.

Continue doing this until an ODE is obtained.

3. Simplify the ODE, if possible, then solve it.

4. Substitute the results into the equations obtained in step (2).

5. Solve the resulting linear difference equations.

6. Finally, substitute Q(n, un) into the LSC, simplify any remaining difference equa-

tions, and solve it.

After finding the characteristics Q(n, un), we want to invest symmetries to reduce the

order of difference equations, as in the second order case. We find a compatible canonical

coordinate sn, which reduces the order by one. Moreover, we want to find the invariant

vn and follow a similar way to solve a higher order difference equation. For equation

(3.37), we suppose the characteristic Q(n, un) is known, then the invariant vn can be

found by solving the partial differential equation

Xvn = Q(n, un)
∂vn
∂un

+ SQ(n, un)
∂vn
∂un+1

+ · · ·+ Sp−1Q(n, un)
∂vn

∂un+p−1
= 0,

and the general technique to solve the partial differential equations of this form is known

as the method of characteristics and is useful for finding analytic solutions.

To solve these equations, we set

dun
Q(n, un)

=
dun+1

SQ(n, un)
= · · · = dun+p−1

Sp−1Q(n, un)
=
dvn
0
. (3.39)
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Chapter 4

Applications Of Symmetry

Method To Some Difference

Equations

4.1 Symmetry Analysis And Exact Solution Of The Dif-

ference Equation un+2 = (n + unun+1)/(un+1)

Consider the second order nonlinear difference equation

w(n, un, un+1) = un+2 =
n+ unun+1

un+1
. (4.1)

We investigate the exact solution of the second order difference equation using Lie sym-

metries. As we mentioned earlier, we shall assume that the characteristic Q(n, un)

depends on n and un only and we use it to find the exact solutions.

The linearized symmetry condition LSC to equation (4.1) is

Q(n+ 2, w)− ∂w

∂un
Q(n, un)− ∂w

∂un+1
Q(n+ 1, un+1) = 0,

but
∂w

∂un
= 1,

and
∂w

∂un+1
=
−n
u2n+1

,
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so the LSC is

Q(n+ 2, w)−Q(n, un) +
n

u2n+1

Q(n+ 1, un+1) = 0. (4.2)

Now, we apply the differential operator L given by

L =
∂

∂un
+
u2n+1

n

∂

∂un+1
,

to equation (4.2) to get

∂

∂un

(
Q(n+ 2, w)−Q(n, un) +

n

u2n+1

Q(n+ 1, un+1)

)
+(

u2n+1

n

∂

∂un+1

)(
Q(n+ 2, w)−Q(n, un) +

n

u2n+1

Q(n+ 1, un+1)

)
= 0,

but

∂

∂un

(
Q(n+ 2, w)

)
= 0,

∂

∂un

(
Q(n, un)

)
= Q′(n, un),

∂

∂un

(
n

u2n+1

Q(n+ 1, un+1)

)
= 0,

∂

∂un+1

(
Q(n+ 2, w)

)
= 0,

∂

∂un+1

(
Q(n, un)

)
= 0,

∂

∂un+1

(
n

u2n+1

Q(n+ 1, un+1)

)
=

n

u2n+1

Q′(n+ 1, un+1) +
−2n

u3n+1

Q(n+ 1, un+1),

this leads to

Q′(n+ 1, un+1)−
2

un+1
Q(n+ 1, un+1)−Q′(n, un) = 0, (4.3)

now, we differentiate this equation with respect to un keeping un+1 fixed. As a result

we obtain the ODE

−Q′′(n, un) = 0,
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whose solution is given by

Q(n, un) = α(n)un + β(n). (4.4)

Next we substitute (4.4) into (4.3), we get

α(n+ 1)− 2

un+1
(α(n+ 1)un+1 + β(n+ 1))− α(n) = 0,

the equation can be split by gathering together all terms with the same dependence

upon un+1

−α(n+ 1)− α(n)− 2

un+1
β(n+ 1) = 0.

Now, we compare the two sides of the last equation, to obtain

−α(n+ 1)− α(n) = 0,

which is a first order linear difference equation whose general solution is

α(n) = c(−1)n,

where c is a constant. We have also

β(n+ 1) = 0 which implies β(n) = 0.

So

Q(n, un) = (−1)nun.

We want to find the invariant using equation (3.24),

dun
(−1)nun

=
dun+1

(−1)n+1un+1
=
dvn
0
,

Taking the first

(
dun

(−1)nun

)
and second

(
dun+1

(−1)n+1un+1

)
invariants, we get

ln|un|+ c∗ = − ln|un+1| which implies − c∗ = ln|un+1un|,

where c∗ ∈ R, so

k1 = unun+1 where k1 = e−c
∗
,

also, we have
dun
un

=
dvn
0
,
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which implies that

vn = k, such that k = f(k1),

where k1 and k are constants.

We choose f(k1) = k1, therefore

vn = unun+1. (4.5)

Applying the shift operator to vn yields

Svn = vn+1 = un+1un+2

= un+1

(
n+ unun+1

un+1

)
= n+ unun+1

= n+ vn, (4.6)

So we have the equation

vn+1 − vn = n,

which is a first order linear difference equation whose solution is given by

vn = v0 +
n−1∑
k=0

k

= v0 +
(n− 1)n

2
. (4.7)

Then by equations (4.5) and (4.7) we have

vn = unun+1 = v0 +
(n− 1)n

2
,

Solving for un+1 we obtain

un+1 =
v0
un

+
(n− 1)n

2un
. (4.8)

The order of Equation (4.1) has been reduced by one.

To solve equation (4.8) we need to obtain a canonical coordinate,

sn =

∫
dun

(−1)nun
= (−1)n ln|un|.
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So sn+1 − sn is an invariant. Consequently,

sn+1 − sn = (−1)n+1 ln|un+1| − (−1)n ln|un|

= (−1)n+1 ln|unun+1|

= (−1)n+1 ln|vn|

= (−1)n+1 ln

∣∣∣∣v0 +
(n− 1)n

2

∣∣∣∣, (4.9)

The general solution of (4.9) is

sn = s0 +
n−1∑
k=0

(−1)k+1 ln|vk|

= ln|u0|+
n−1∑
k=0

(−1)k+1 ln

∣∣∣∣u0u1 +
k(k − 1)

2

∣∣∣∣,
but sn = (−1)n ln|un|, so the general solution of (4.1)

un = exp

(
(−1)n ln|u0|+

n−1∑
k=0

(−1)k−n+1 ln

∣∣∣∣u0u1 +
k(k − 1)

2

∣∣∣∣
)

= exp

(
(−1)n ln|u0|

)
· exp

(
n−1∑
k=0

(−1)k−n+1 ln

∣∣∣∣u0u1 +
k(k − 1)

2

∣∣∣∣
)

= (u0)
(−1)n

n−1∏
k=0

(
u0u1 +

k(k − 1)

2

)(−1)k−n+1

4.2 Exact Solution Of The Difference Equation un+3 = 1/(un+2(1+

unun+1))

In this section, we investigate symmetries and solutions of the third-order difference

equation un+3 = 1/(un+2(1 + unun+1)).

Consider the third order difference equation

un+3 =
1

un+2(1 + unun+1)
. (4.10)

We want to find the solution of equation (4.10) using Lie symmetries.

Firstly, we write the LSC to obtain the characteristics Q(n, un),

S3Q(n, un)− ∂w

∂un
Q(n, un)− ∂w

∂un+1
Q(n+ 1, un+1)−

∂w

un+2
Q(n+ 2, un+2) = 0,
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but
∂w

∂un
=

−un+1

un+2(1 + unun+1)2
= −un+1un+2w

2,

∂w

∂un+1
=

−un
un+2(1 + unun+1)2

= −unun+2w
2,

and
∂w

∂un+2
=

−1

u2n+2(1 + unun+1)
=
−w
un+2

,

so the LSC is

Q(n+3, w)+un+1un+2w
2Q(n, un)+unun+2w

2Q(n+1, un+1)+
w

un+2
Q(n+2, un+2) = 0.

(4.11)

Now, we apply the differential operator L, given by

L =
∂

∂un
− un+1

un

∂

∂un+1
,

to equation (4.10) to get

∂

∂un

(
Q(n+3, w)+un+1un+2w

2Q(n, un)+unun+2w
2Q(n+1, un+1)+

w

un+2
Q(n+2, un+2)

)

−

(
un+1

un

)
∂

∂un+1

(
Q(n+ 3, w) + un+1un+2w

2Q(n, un) + unun+2w
2Q(n+ 1, un+1)

+
w

un+2
Q(n+ 2, un+2)

)
= 0,

but

∂

∂un

(
Q(n+ 3, w)

)
= 0,

∂

∂un

(
un+1un+2w

2Q(n, un)

)
= un+1un+2w

2Q′(n, un),

∂

∂un

(
unun+2w

2Q(n+ 1, un+1)

)
= un+2w

2Q(n+ 1, un+1),

∂

∂un

(
w

un+2
Q(n+ 2, w)

)
= 0,

∂

∂un+1

(
Q(n+ 3, w)

)
= 0,
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∂

∂un+1

(
un+1un+2w

2Q(n, un)

)
= un+2w

2Q(n, un),

∂

∂un+1

(
unun+2w

2Q(n+ 1, un+1)

)
= unun+2w

2Q′(n+ 1, un+1),

∂

∂un+1

(
w

un+2
Q(n+ 2, w)

)
= 0,

this leads to(
w2un+1un+2Q

′(n, un) + w2un+2Q(n+ 1, un+1)

)
−(

un+1

un

)(
w2un+2Q(n, un) + w2unun+2Q

′(n+ 1, un+1)

)
= 0,

which can be written as

w2un+1un+2Q
′(n, un) + w2un+2Q(n+ 1, un+1)−

w2un+1un+2

un
Q(n, un)−

w2un+1un+2Q
′(n+ 1, un+1) = 0,

multiply the last equation by 1
un+1un+2w2 , we obtain

Q′(n, un) +
1

un+1
Q(n+ 1, un+1)−

1

un
Q(n, un)−Q′(n+ 1, un+1) = 0, (4.12)

now, we differentiate equation (4.12) with respect to un keeping un+1 fixed. As a result

we obtain the ODE

Q′′(n, un) +
1

u2n
Q(n, un)− 1

un
Q′(n, un) = 0,

multiply this equation by u2n, to get

u2nQ
′′(n, un)− unQ′(n, un) +Q(n, un) = 0,

which is an Euler ordinary differential equation, whose solution is given by

Q(n, un) = α(n)un + β(n)un lnun, (4.13)
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for some α and β functions of n.

To find α(n) and β(n) we substitute (4.13) into (4.12), we get

α(n) + β(n) + β(n) lnun + α(n+ 1) + β(n+ 1) lnun+1 − α(n)− β(n) lnun−

α(n+ 1)− β(n+ 1)− β(n+ 1) lnun+1 = 0,

which implies

β(n)− β(n+ 1) = 0,

which is a first order difference equation whose general solution is

β(n) = c1; c1 ∈ R.

We suppose that β(n) = 0 to simplify computation. Next we substitute

Q(n, un) = α(n)un,

into equation (4.11) to obtain

α(n+3)w+un+1un+2w
2(α(n)un)+unun+2w

2(α(n+1)un+1)+
w

un+2
(α(n+2)un+2) = 0,

which implies(
α(n+ 3) + α(n+ 2)

)
w+

(
α(n) + α(n+ 1)

)
unun+1un+2w

2 = 0,

to simplify this equation, we substitute w = 1
un+2(1+unun+1)

and we multiply it by

un+2(1 + unun+1)
2 to obtain(

α(n+ 3) + α(n+ 2)

)
(1 + unun+1)+

(
α(n) + α(n+ 1)

)
unun+1 = 0,

this leads to(
α(n+ 3) + α(n+ 2)

)
+

(
α(n+ 3) + α(n+ 2) + α(n+ 1) + α(n)

)
unun+1 = 0,

comparing the two sides, we get

α(n+ 3) + α(n+ 2) = 0,

and

α(n+ 3) + α(n+ 2) + α(n+ 1) + α(n) = 0,
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Thus,

α(n+ 1) + α(n) = 0,

which is a first order linear difference equation whose solution is

α(n) = c(−1)n, where c is a constant.

So:

Q(n, un) = c(−1)nun, where c is a constant.

Now we want to find the invariant using equation (3.39),

dun
(−1)nun

=
dun+1

(−1)n+1un+1
=

dun+2

(−1)n+2un+2
=
dvn
0
.

Taking the first

(
dun

(−1)nun

)
and second

(
dun+1

(−1)n+1un+1

)
invariants, we get

ln|un|+ c∗ = − ln|un+1| which implies − c∗ = ln|un+1un|,

where c∗ ∈ R, so

k1 = unun+1 where k1 = e−c
∗
,

and taking the first

(
dun

(−1)nun

)
and third

(
dun+2

(−1)n+2un+2

)
invariants, we get

k2 =
un+2

un
,

and taking the second

(
dun+1

(−1)n+1un+1

)
and third

(
dun+2

(−1)n+2un+2

)
invariants, we get

k3 = un+1un+2,

also, we have
dun

(−1)nun
=
dvn
0
,

which implies that

vn = k, such that k = f(k1, k2, k3),

where k1, k2, k3 and k are constants.

We choose f(k1, k2, k3) = k3 = un+1un+2, therefore

vn = un+1un+2, (4.14)
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Applying the shift operator to vn yields

Svn = vn+1 = un+2un+3

= un+2
1

un+2(1 + unun+1)

=
1

1 + unun+1
but unun+1 = vn−1

=
1

1 + vn−1
,

hence

vn+2 =
1

1 + vn
,

which is a second order difference equation that can be solved recursively. Let v0 and

v1 be given, then

v2 =
1

1 + v0
,

v3 =
1

1 + v1
,

v4 =
1

1 + v2
=

1 + v0
2 + v0

,

v5 =
1

1 + v3
=

1 + v1
2 + v1

,

v6 =
1

1 + v4
=

2 + v0
3 + 2v0

,

v7 =
1

1 + v5
=

2 + v1
3 + 2v1

,

v8 =
1

1 + v6
=

3 + 2v0
5 + 3v0

,

Let f(n) be the Fibonacci numbers which satisfy the recurrence relation

f(n) = f(n− 1) + f(n− 2); n ≥ 2,

where f(0) = 0 and f(1) = 1. This is a second order linear difference equation whose

general solution is given by

f(n) =

√
5

5

(
1 +
√

5

2

)n
−
√

5

5

(
1−
√

5

2

)n
. (4.15)

We note that

v2 =
f(1) + f(0)v0
f(2) + f(1)v0

,

v3 =
f(1) + f(0)v1
f(2) + f(1)v1

,
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v4 =
f(2) + f(1)v0
f(3) + f(1)v0

,

v5 =
f(2) + f(1)v1
f(3) + f(1)v1

,

so in general

vn =


f(n

2
)+f(n−2

2
)v0

f(n+2
2

)+f(n
2
)v0

; n = 2k; k = 1, 2, 3, · · ·

f(n−1
2

)+f(n−3
2

)v1

f(n+1
2

)+f(n−1
2

)v1
; n = 2k + 1; k = 1, 2, 3, · · ·

(4.16)

where f(n) is given by (4.15).

Lemma 4.2.1. The general solution of the difference equation

vn+2 =
1

1 + vn
,

is given by (4.16).

Proof. By induction.

Firstly, we want to prove for n = 2k ; k = 1, 2, 3, · · ·
It’s true for k = 1, (that is n = 2) since

v2 =
f(1) + f(0)v0
f(2) + f(1)v0

.

Suppose it’s true for k − 1, (that is n− 2 = 2k − 2)

vn−2 =
f(n−22 ) + f(n−42 )v0

f(n2 ) + f(n−22 )v0
.

Now, we want to prove for k, (that is n = 2k)

vn =
1

1 + vn−2
, we substitute vn−2 from our assumption

=
1

1 +
f(n−2

2
)+f(n−4

2
)v0

f(n
2
)+f(n−2

2
)v0

=
f(n2 ) + f(n−22 )v0

f(n2 ) + f(n−22 )v0 + f(n−22 ) + f(n−42 )v0
,

since f(n) = f(n− 1) + f(n− 2), we get

vn =
f(n2 ) + f(n−22 )v0

f(n+2
2 ) + f(n2 )v0

.
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Secondly, we want to prove it if n = 2k + 1 ; k = 1, 2, 3, · · ·
It’s true for k = 1, (that is n = 3) since

v3 =
f(1) + f(0)v1
f(2) + f(1)v1

.

Suppose it’s true for k − 1, that is n− 2 = 2k − 1

vn−2 =
f(n−32 ) + f(n−52 )v1

f(n−12 ) + f(n−32 )v1
.

Now, we want to prove for k, (that is n = 2k + 1)

vn =
1

1 + vn−2
, we substitute vn−2 from our assumption

=
1

1 +
f(n−3

2
)+f(n−5

2
)v1

f(n−1
2

)+f(n−3
2

)v1

=
f(n−12 ) + f(n−32 )v1

f(n−12 ) + f(n−32 )v1 + f(n−32 ) + f(n−52 )v1
,

since f(n) = f(n− 1) + f(n− 2), we get

vn =
f(n−12 ) + f(n−32 )v1

f(n+1
2 ) + f(n−12 )v1

.

This proves our result.

Then using equation (4.14) and equation (4.16) and solving for un+2 we obtain

un+2 =
vn
un+1

, (4.17)

where vn is given by equation (4.16). The order of equation (4.10) has been reduced by

two.

To solve equation (4.17) we need to obtain a canonical coordinate sn,

sn =

∫
dun

(−1)nun

=(−1)n ln | un | .

So sn+1 − sn is an invariant. Consequently,

sn+1 − sn = (−1)n+1 ln|un+1| − (−1)n ln|un|

= (−1)n+1 ln|unun+1|, (4.18)
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which is a first order difference equation whose general solution is

sn = s0 +
n−1∑
k=0

(−1)k+1 ln|ukuk+1|

= ln|u0|+ (−1)1 ln|u0u1|+ (−1)2 ln|u1u2|+ (−1)3 ln|u2u3|+
n−1∑
k=3

(−1)k+1 ln|vk−1|

= − ln|u3|+
n−1∑
k=3

(−1)k+1 ln|vk−1|, (4.19)

where u3 = 1
u2(1+u0u1)

and vk−1 is given by

vk−1 =


f( k−1

2
)+f( k−3

2
)v0

f( k+1
2

)+f( k−1
2

)v0
; k = 3, 5, 7, · · ·

f( k−2
2

)+f( k−4
2

)v1

f( k
2
)+f( k−2

2
)v1

; k = 4, 6, 8, · · ·

(4.20)

where v0 = u1u2, v1 = u2u3 = 1
1+u0u1

and f is given by (4.15) .

Also, we have sn = (−1)n ln|un|, so

un = exp ((−1)nsn), (4.21)

Now, from equation (4.19) and equation (4.21), we obtain the general solution to equa-

tion (4.10)

un = exp

(
(−1)n(− ln|u3|+

n−1∑
k=3

(−1)k+1 ln|vk−1|)

)

= exp

(
(−1)n+1 ln

∣∣∣∣ 1

u2(1 + u0u1)

∣∣∣∣+
n−1∑
k=3

(−1)k+n+1 ln|vk−1|

)
, (4.22)

where u0, u1, and u2 are given and vk−1 is given by equation (4.20).

To verify that equation (4.22) solves equation (4.10)

un = exp

(
(−1)n+1 ln

∣∣∣∣ 1

u2(1 + u0u1)

∣∣∣∣+

n−1∑
k=3

(−1)k+n+1 ln|vk−1|

)

= exp

(
(−1)n+1 ln

∣∣∣∣ 1

u2(1 + u0u1)

∣∣∣∣
)

exp

(
n−1∑
k=3

(−1)k+n+1 ln|vk−1|

)

=

(
1

u2(1 + u0u1)

)(−1)n+1(
n−1∏
k=3

(vk−1)
(−1)k+n+1

)

=

([
u2(1 + u0u1)

]−1)(−1)n+1(
n−1∏
k=3

(vk−1)
(−1)k+n+1

)
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=

[
u2(1 + u0u1)

](−1)n+2(
n−1∏
k=3

(vk−1)
(−1)k+n+1

)

=

[
u2(1 + u0u1)

](−1)n( n−1∏
k=3

(vk−1)
(−1)k+n+1

)

and

un+1 =

[
u2(1 + u0u1)

](−1)n+1(
n∏
k=3

(vk−1)
(−1)k+n

)

un+2 =

[
u2(1 + u0u1)

](−1)n( n+1∏
k=3

(vk−1)
(−1)k+n+1

)

un+3 =

[
u2(1 + u0u1)

](−1)n+1(
n+2∏
k=3

(vk−1)
(−1)k+n

)

now, from this we have

unun+1 =

[
u2(1 + u0u1)

](−1)n( n−1∏
k=3

(vk−1)
(−1)k+n+1

)[
u2(1 + u0u1)

](−1)n+1(
n∏
k=3

(vk−1)
(−1)k+n

)

=

[
u2(1 + u0u1)

](−1)n−(−1)n( n−1∏
k=3

(vk−1)
(−1)k+n+1

(vk−1)
(−1)k+n

)(
vn−1

)(−1)2n

= (1)

(
n−1∏
k=3

(vk−1)
(−1)k+n+1+(−1)k+n

)(
vn−1

)

=

(
n−1∏
k=3

(vk−1)
0

)(
vn−1

)
= vn−1,

so,

un+2(1 + unun+1) =

[
u2(1 + u0u1)

](−1)n( n+1∏
k=3

(vk−1)
(−1)k+n+1

)(
1 + vn−1

)
,

from this we get

1

un+2(1 + unun+1)
=

1[
u2(1 + u0u1)

](−1)n(
n+1∏
k=3

(vk−1)(−1)
k+n+1

)(
1 + vn−1

)

=

[
u2(1 + u0u1)

](−1)n+1(
1

n+1∏
k=3

(vk−1)(−1)
k+n+1

)(
1

1 + vn−1

)
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=

[
u2(1 + u0u1)

](−1)n+1(
n+1∏
k=3

(
1

vk−1
)(−1)

k+n+1

)(
vn+1

)

=

[
u2(1 + u0u1)

](−1)n+1(
n+1∏
k=3

(vk−1)
(−1)k+n+2

)(
vn+1

)

=

[
u2(1 + u0u1)

](−1)n+1(
n+1∏
k=3

(vk−1)
(−1)k+n

)(
vn+1

)

=

[
u2(1 + u0u1)

](−1)n+1(
n+2∏
k=3

(vk−1)
(−1)k+n

)
= un+3.

This proves that equation (4.22) is a solution of the equation (4.10).

4.3 Symmetry Analysis And Exact Solution Of The Dif-

ference Equation un+4 = (unun+1)/(un + un+3)

In this section, we investigate the solution of the fourth order difference equation un+4 =

(unun+1)/(un + un+3) using Lie symmetries.

Consider the fourth order difference equation

un+4 =
unun+1

un + un+3
. (4.23)

To find the general solution using Lie symmetries, we write the LSC

Q(n+ 4, un+4)−
∂w

∂un
Q(n, un)− ∂w

∂un+1
Q(n+ 1, un+1)−

∂w

∂un+2
Q(n+ 2, un+2)−

∂w

∂un+3
Q(n+ 3, un+3) = 0,

but
∂w

∂un
=

un+1un+3

(un + un+3)2
=
w2un+3

u2nun+1
,

∂w

∂un+1
=

un
un + un+3

=
w

un+1
,

∂w

∂un+2
= 0,

and
∂w

∂un+3
=
−unun+1

(un + un+3)2
=
−w2

unun+1
,
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so the LSC is

Q(n+4, w)−w
2un+3

u2nun+1
Q(n, un)− w

un+1
Q(n+1, un+1)+

w2

unun+1
Q(n+3, un+3) = 0. (4.24)

Now, we apply the differential operator (L), given by

L =
∂

∂un
+
∂un+1

∂un

∂

∂un+1

=
∂

∂un
− wun+3

u2n

∂

∂un+1
,

to get

∂

∂un

(
Q(n+4, w)−w

2un+3

u2nun+1
Q(n, un)− w

un+1
Q(n+1, un+1)+

w2

unun+1
Q(n+3, un+3)

)
−(

wun+3

u2n

∂

∂un+1

)(
Q(n+ 4, w)− w2un+3

u2nun+1
Q(n, un)− w

un+1
Q(n+ 1, un+1)+

w2

unun+1
Q(n+ 3, un+3)

)
= 0,

but

∂

∂un

(
Q(n+ 4, un+4)

)
= 0,

∂

∂un

(
w2un+3

u2nun+1
Q(n, un)

)
=
w2un+3

u2nun+1
Q′(n, un)− 2w2un+3

u3nun+1
Q(n, un),

∂

∂un

(
w

un+1
Q(n+ 1, un+1)

)
= 0,

∂

∂un

(
w2

unun+1
Q(n+ 3, un+3)

)
=
−w2

u2nun+1
Q(n+ 3, un+3),

∂

∂un+1

(
Q(n+ 4, un+4)

)
= 0,

∂

∂un+1

(
w2un+3

u2nun+1
Q(n, un)

)
=
−w2un+3

u2nu
2
n+1

Q(n, un),

∂

∂un+1

(
w

un+1
Q(n+ 1, un+1)

)
=

w

un+1
Q′(n+ 1, un+1) +

−w
u2n+1

Q(n+ 1, un+1),

∂

∂un+1

(
w2

unun+1
Q(n+ 3, un+3)

)
=
−w2

unu2n+1

Q(n+ 3, un+3),
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so

−w2un+3

u2nun+1
Q′(n, un) +

2w2un+3

u3nun+1
Q(n, un) +

−w2

u2nun+1
Q(n+ 3, un+3)

−

(
wun+3

u2n

)[
w2un+3

u2nu
2
n+1

Q(n, un)− w

un+1
Q′(n+ 1, un+1) +

w

u2n+1

Q(n+ 1, un+1)−

w2

unu2n+1

Q(n+ 3, un+3)

]
= 0,

this leads to

−w2un+3

u2nun+1
Q′(n, un) +

2w2un+3

u3nun+1
Q(n, un)− w2

u2nun+1
Q(n+ 3, un+3)−

w3u2n+3

u4nu
2
n+1

Q(n, un) +
w2un+3

u2nun+1
Q′(n+ 1, un+1)−

w2un+3

u2nu
2
n+1

Q(n+ 1, un+1)+

w3un+3

u3nu
2
n+1

Q(n+ 3, un+3) = 0,

multiply the last equation by −u
2
nun+1

w2un+3
, to get

Q′(n, un)− 2

un
Q(n, un) +

1

un+3
Q(n+ 3, un+3) +

wun+3

u2nun+1
Q(n, un)

−Q′(n+ 1, un+1) +
1

un+1
Q(n+ 1, un+1)−

w

unun+1
Q(n+ 3, un+3) = 0. (4.25)

Now, differentiate equation (4.25) with respect to un keeping un+1 fixed

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2n
Q(n, un) +

wun+3

u2nun+1
Q′(n, un)− 2wun+3

u3nun+1
Q(n, un)+

w

u2nun+1
Q(n+ 3, un+3) = 0,

multiply this equation by u2n, to get

u2nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) +
wun+3

un+1
Q′(n, un)− 2wun+3

unun+1
Q(n, un)+

w

un+1
Q(n+ 3, un+3) = 0, (4.26)

again, we differentiate with respect to un

u2nQ
′′′(n, un) +

wun+3

un+1
Q′′(n, un)− 2wun+3

unun+1
Q′(n, un) +

2wun+3

u2nun+1
Q(n, un) = 0.
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To simplify this differential equation we substitute w = unun+1

un+un+3
, then multiply by

un(un + un+3), to obtain

u3n(un + un+3)Q
′′′(n, un) + u2nun+3Q

′′(n, un)− 2unun+3Q
′(n, un) + 2un+3Q(n, un) = 0,

which implies

u4nQ
′′′(n, un) + u3nun+3Q

′′′(n, un) + u2nun+3Q
′′(n, un)− 2unun+3Q

′(n, un)+

2un+3Q(n, un) = 0,

since Q(n, un) depends on n and un only, we separate the last equation with respect to

un+3.

The coefficient of 1 is

u4nQ
′′′(n, un) = 0, (4.27)

and the coefficient of un+3 is

u3nQ
′′′(n, un) + u2nQ

′′(n, un)− 2unQ
′(n, un) + 2Q(n, un) = 0. (4.28)

from equation (4.27) we get Q′′′(n, un) = 0, so equation (4.28) becomes

u2nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) = 0,

which is a Cauchy Euler differential equation whose solution is given by

Q(n, un) = α(n)un + β(n)u2n, (4.29)

where α(n) and β(n) are functions of n.

Next we substitute (4.29) into (4.26), we get

u2n(2β(n))−2un(α(n)+2β(n)un)+2α(n)un+2β(n)u2n+
wun+3

un+1
α(n)+

2wun+3

un+1
(β(n)un)

−2wun+3

unun+1
(α(n)un)−2wun+3

unun+1
(β(n)u2n)+

w

un+1
(α(n+3)un+3)+

w

un+1
(β(n+3)u2n+3) = 0,

this leads to

wun+3

un+1
(α(n)− 2α(n) + α(n+ 3)) +

wu2n+3

un+1
(β(n+ 3)) = 0,

multiply by un+1

wun+3
, we get

(α(n+ 3)− α(n)) + β(n+ 3)un+3 = 0,
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comparing the two sides of the last equation, we get

α(n+ 3)− α(n) = 0,

which is a third order linear difference equation whose solution is given by

α(n) = c1 + c2

(
−1 +

√
3i

2

)n
+ c3

(
−1−

√
3i

2

)n

= c1 + c2

(
cos(

2nπ

3
) + i sin(

2nπ

3
)

)
+ c3

(
cos(

2nπ

3
)− i sin(

2nπ

3
)

)
,

where c1, c2 and c3 ∈ R. and

β(n+ 3) = 0 so β(n) = 0, for all n.

Hence,

Q(n, un) =

[
c1 + c2

(
cos(

2nπ

3
) + i sin(

2nπ

3
)

)
+ c3

(
cos(

2nπ

3
)− i sin(

2nπ

3
)

)]
un.

We suppose that c2 = 0 and c3 = 0 to simplify computation. So

Q(n, un) = c1un, where c1 is a constant.

Now, we want to find the invariant using equation (3.39),

dun
un

=
dun+1

un+1
=
dun+2

un+2
=
dun+3

un+3
=
dvn
0
.

Taking the first (dunun ) and second (dun+1

un+1
) invariants, we get

lnun + c∗ = lnun+1 which implies c∗ = ln
un+1

un
,

where c∗ ∈ R, so

k1 =
un+1

un
, where k1 = ec

∗
,

taking the first (dunun ) and third (dun+2

un+2
) invariants, we get

k2 =
un+2

un
, where k2 ∈ R

taking the first (dunun ) and fourth (dun+3

un+3
) invariants, we get

k3 =
un+3

un
, where k3 ∈ R
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taking the second (dun+1

un+1
) and third (dun+2

un+2
) invariants, we get

k4 =
un+2

un+1
, where k4 ∈ R

taking the second (dun+1

un+1
) and fourth (dun+3

un+3
) invariants, we get

k5 =
un+3

un+1
, where k5 ∈ R

and taking the third (dun+2

un+2
) and fourth (dun+3

un+3
) invariants, we get

k6 =
un+3

un+2
, where k6 ∈ R

also, we have
dun
un

=
dvn
0
,

which implies that

vn = k, where k = f(k1, k2, k3, k4, k5, k6),

where k1, k2, k3, k4, k5, k6 and k are constants.

We choose f(k1, k2, k3, k4, k5, k6) = k3, therefore

vn =
un+3

un
, (4.30)

Applying the shift operator to vn yields

Svn = vn+1 =
un+4

un+1

=
unun+1

un+1(un + un+3)

=
un

un + un+3

=
1

1 + un+3

un

, but
un+3

un
= vn

=
1

1 + vn
.

So we have the equation

vn+1 =
1

vn + 1
,

which is a Riccati difference equation of type one, where a(n) = 1, b(n) = 0 and g(n) = 1

so to solve it we let

vn =
xn+1

xn
− 1,
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to get

xn+2 − xn+1 − xn = 0,

so

xn = c1

(
1 +
√

5

2

)n
+ c2

(
1−
√

5

2

)n
,

where c1, c2 ∈ R. this implies

vn =
xn+1

xn
− 1

=

c1

(
1+
√
5

2

)n+1

+ c2

(
1−
√
5

2

)n+1

c1

(
1+
√
5

2

)n
+ c2

(
1−
√
5

2

)n − 1

=
2c1(1 +

√
5)n−1 + 2c2(1−

√
5)n−1

c1(1 +
√

5)n + c2(1−
√

5)n
. (4.31)

Then by equations (4.30) and (4.31) we have

vn =
un+3

un
=

2c1(1 +
√

5)n−1 + 2c2(1−
√

5)n−1

c1(1 +
√

5)n + c2(1−
√

5)n
,

solving for un+3 we obtain

un+3 =

(
2c1(1 +

√
5)n−1 + 2c2(1−

√
5)n−1

c1(1 +
√

5)n + c2(1−
√

5)n

)
un. (4.32)

The order of Equation (4.23) has been reduced by one.

To solve equation (4.32) we need to obtain a canonical coordinate,

sn =

∫
dun
un

= ln | un | .

So sn+3 − sn is an invariant. Consequently,

sn+3 − sn = ln|un+3| − ln|un|

= ln

∣∣∣∣un+3

un

∣∣∣∣
= ln|vn|

= ln

∣∣∣∣∣
(

2c1(1 +
√

5)n−1 + 2c2(1−
√

5)n−1

c1(1 +
√

5)n + c2(1−
√

5)n

)∣∣∣∣∣, (4.33)
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The general solution of (4.33) is

sn = a1 + a2

(
−1 +

√
3i

2

)n
+ a3

(
−1−

√
3i

2

)n
+

n−1∑
k=0

ln

∣∣∣∣∣
(

2c1(1 +
√

5)k−1 + 2c2(1−
√

5)k−1

c1(1 +
√

5)k + c2(1−
√

5)k

)∣∣∣∣∣
= a1 + a2

(
cos(

2nπ

3
) + i sin(

2nπ

3
)

)
+ a3

(
cos(

2nπ

3
)− i sin(

2nπ

3
)

)

+

n−1∑
k=0

ln

∣∣∣∣∣
(

2c1(1 +
√

5)k−1 + 2c2(1−
√

5)k−1

c1(1 +
√

5)k + c2(1−
√

5)k

)∣∣∣∣∣
= a1 + (a2 + a3) cos(

2nπ

3
) + i(a2 − a3) sin(

2nπ

3
)

+
n−1∑
k=0

ln

∣∣∣∣∣
(

2c1(1 +
√

5)k−1 + 2c2(1−
√

5)k−1

c1(1 +
√

5)k + c2(1−
√

5)k

)∣∣∣∣∣
= a1 + a′2 cos(

2nπ

3
) + a′3 sin(

2nπ

3
) +

n−1∑
k=0

ln

∣∣∣∣∣
(

2c1(1 +
√

5)k−1 + 2c2(1−
√

5)k−1

c1(1 +
√

5)k + c2(1−
√

5)k

)∣∣∣∣∣,
where a′2 = a2 + a3 and a′3 = i(a2 − a3).
The canonical coordinate sn = ln|un|, so the general solution of (4.23) is

un = exp

[
a1 + a′2 cos(

2nπ

3
) + a′3 sin(

2nπ

3
)+

n−1∑
k=0

ln

∣∣∣∣∣
(

2c1(1 +
√

5)k−1 + 2c2(1−
√

5)k−1

c1(1 +
√

5)k + c2(1−
√

5)k

)∣∣∣∣∣
]
.

Hence,

un =
n−1∏
k=0

(
2c1(1 +

√
5)k−1 + 2c2(1−

√
5)k−1

c1(1 +
√

5)k + c2(1−
√

5)k

)
·exp

[
a1+a′2 cos(

2nπ

3
)+a′3 sin(

2nπ

3
)

]
.

71



Bibliography

[1] A. M. Haghighi and D. P Mishev, Difference and differential equations with appli-

cations in queueing theory, John Wiley & Sons, 2013.

[2] A. Walter, Partial differential equations, New York, NY, USA: John Wiley & Sons,

1992.

[3] G. E. Shilov and R. A. Silverman, Elementary real and complex analysis, Courier

Corporation, 1996.

[4] L. Ndlovu, M. Folly-Gbetoula and A.H. Kara,Symmetries, Associated First Inte-

grals, and Double Reduction of Difference Equation, Advances in Difference Equa-

tions (2014) 1-6.

[5] M. Folly-Gbetoula,Symmetry, reductions and exact solutions of the difference equa-

tion, Journal of Difference Equations and Applications (2017) 1-9.

[6] M. Folly-Gbetoula, S. Mamba and A. H. Kara, Symmetry analysis and conservation

laws of some third-order difference equations, Journal of Difference Equations and

Applications (2017) DOI: 10.1080/10236198.2017.1382486.

[7] P. E. Hydon,Difference Equations by Differential Equation Methods, Cambridge

University Press, Cambridge, 2014.

[8] P. E Hydon, Symmetries and first integrals of ordinary difference equations,The

Royal Society (2000) 2835-2855.

[9] P. E. Hydon, Symmetry methods for differential equations: a beginner’s guide, Cam-

bridge University Press, 2000.

[10] P. J. Olver, Applications of Lie groups to differential equations, 2nd ed., Springer,

New York, 1993.

[11] R. E. Mickens, Difference Equations: Theory, Applications and Advanced Topics,

CRC Press, 2015.

[12] S. Elaydi, An introduction to difference equations, Springer, 2000.

72

10.1080/10236198.2017.1382486

	Acknowledgements
	Declaration
	Abstract
	List Of Figures
	List Of Tables
	Symbols
	1 Introduction
	2 Basic Preliminaries
	2.1 General Basics
	2.2 Existence And Uniqueness Theorem
	2.3 First Order Linear Difference Equations
	2.4 Difference Calculus
	2.5 Higher Order Linear Difference Equations
	2.6 Nonlinear Difference Equations
	2.7 Taylor Series
	2.8 Method Of Characteristics

	3 Symmetry Method
	3.1 Symmetries Of Difference Equations
	3.2 Lie Symmetries Of A Given First Order Difference Equation
	3.3 Symmetries And Second Order Difference Equations
	3.4 Symmetries And Higher Order Difference Equations

	4 Applications Of Symmetry Method To Some Difference Equations
	4.1 Symmetry Analysis And Exact Solution Of The Difference Equation un+2= (n+ unun+1)/(un+1)
	4.2 Exact Solution Of The Difference Equation un+3= 1/(un+2(1+unun+1))
	4.3 Symmetry Analysis And Exact Solution Of The Difference Equation un+4= (unun+1)/(un+ un+3)

	Bibliography

